6.14: Trees- Introducing X-bar theory (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    192638
    • 6.14: Trees- Introducing X-bar theory (1)
    • Catherine Anderson, Bronwyn Bjorkman, Derek Denis, Julianne Doner, Margaret Grant, Nathan Sanders, and Ai Taniguchi
    • eCampusOntario

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Constituency tests and phrase structure rules provide a useful starting point for thinking about the structure of possible sentences, but they don’t really start explaining why certain structures are grammatical, or predicting what possible and impossible grammars might look like. In this section we introduce X-bar theory, which aims to make stronger predictions by restricting the shape of possible trees. It’s called that because it introduces an extra layer of structure inside phrases called the “bar level”.

    To see why we might want to constrain what trees are possible, let’s begin by thinking about a type of structure that’s really easy to describe using a phrase structure rule:

    • Weird phrase structure rule: NP –> V (Adj) PP

    This rule is weird because it’s a noun phrase that’s missing the noun: we already saw in Section 6.3 is that what makes something a noun phrase is precisely that it has a noun inside it. The restriction that all natural languages phrases have heads of the same category is the first limit we’ll put on possible structures in X-bar theory:

    • Every phrase (XP) has a head of the same category (X)

    And this goes the other way as well: all heads (words) project (or “occur inside”) a phrase of their category:

    • Every head (X) projects a phrase of the same category (XP)

    What this means is that even when a noun or verb—or any other category—doesn’t obviously have any other words in the same phrase as it, it’s still inside an NP or a VP. In other words, while the two sentences in (1) are in one sense very different (one has two words, the other has 11), in another sense they have the same structure: both sentences consist of an NP followed by a VP.

    (1) a. Cats sleep.
    b. The many very fast spaceships carried a lot of valuable cargo.

    By default, in X-bar theory we assume that the same constraints apply to all categories and phrases, and that they apply in all languages. In the absence of evidence to the contrary, we assume that determiners occur inside determiner phrases (DPs), degree words occur inside degree phrases (DegPs), and so on.

    The assumption that all phrases involve the same structure, and that this is true in all languages, is a hypothesis. If we encounter evidence that is inconsistent with this hypothesis, we would revise the theory to account for new data. Active research in syntax consists of investigating grammatical patterns in languages, and showing how they do (or do not) require specific revisions to current syntactic theories.

    The key feature of X-bar theory (and the source of its name) arises from the observation that phrases aren’t just a flat structure.

    Our phrase structure rule for NPs, for example, could build NPs that contain a determiner (or DP), a noun, and a PP, but there was no sub-grouping. The tree diagram in Figure 6.5 shows this. (the triangle over robots indicates that we have abbreviated structure inside this constituent.)

    6.14: Trees- Introducing X-bar theory (2)

    What we find if we look at phrases of all types, in many languages, is that head is always in a closer relationship with one other element inside the phrase, than with anything else. Specifically, heads are in a closer relationship with their complement—remember that in English the complement follows the head of the phrase, while it can come before the head in other languages. We saw in Section 6.3, for example, that verbs determine whether and how many objects they combine with. Above we saw that adjectives generally combine with PP complements, but that a few adjectives idiosyncratically allow NP complements.

    This means that there are units—constituents—inside phrases. So not only do all heads have phrases, and all phrases have heads, but there is what we might call a “mid sized sub-phrase” in every phrase (or an “intermediate phrase”). This mid-sized phrase is called X-bar (written X’), which is where the theory gets its name.

    So we expand X-bar theory to the following generalizations, expressed in phrase structure rules:

    • XP → (YP) X’
    • X’ → X (ZP)

    XP, YP, and ZP are all variables over any category of phrase. These rules can be read as saying:

    Every phrase (XP) must have a bar-level of the same category (X’) within it, optionally preceded by another phrase (YP). Every bar-level (X’) must have a head of the same category within it, optionally followed by another phrase (ZP).

    The positions occupied by YP and ZP are argument positions, and they have special names. The names for structural relations in trees are adapted from family relationships: parent, child, etc.

    The sibling of the head is the copmlement (with an “e”), not the compliment (with an “i”)! This is complement as in set theory, not as in saying nice things to someone.

    Complement:
    Sibling of the head X (child of X’) is its complement
    Heads select their complement (including if they take a complement)
    Specifier:
    The child of XP, sister of X’ is the specifier of the phrase

    If we put these labels in the tree in place os “YP” and “ZP” above, we get a general X-bar template for English (specific to English because it includes the linear order found in English).

    6.14: Trees- Introducing X-bar theory (3)

    What is the evidence for bar levels? In the remainder of this section we review the evidence for sub-constituents inside NPs and VPs.

    Evidence for N’

    The evidence for N’ (“N-bar”) involves showing that a noun is in a closer relationship with a PP that follows it than it is with a previous determiner.

    We can show this with constituency tests that target this sub-NP unit. These tests are a bit trickier to apply than the constituency tests covered in Section 6.4, but they follow the same general principle.

    Here we will only go through one of these tests: one-replacement. Just as a pronoun can replace a whole NP, the word “one” can (for at least some speakers of English) replace a noun and a following prepositional phrase, leaving behind anything before the noun. Like other kinds of replacement, especially replacement with do for VPs, one-replacement requires that there’s an earlier NP that “fills in” what’s being replaced.

    (2) [NP Yesterday’s launch of a spaceship ] was exciting, but [ today’s one ] was not. (where [one]=[launch of a spaceship])

    By contrast, you can’t replace a determiner and an N with one, leaving the PP behind:

    (3) *[NP The launch of a spaceship ] is exciting, but [ one of a mining drone ] is not. (where [one]=[the launch])

    Recall from Section 6.5 that determiners and possessors are in complementary distribution, which we account for by putting them in the same structural position: NP only has one specifier, so it can only hold one determiner or possessor.

    This gives us the following overall structure of an NP, showing a closer relationship between the N and a following PP than between either of those and the preceding determiner or possessor.

    6.14: Trees- Introducing X-bar theory (4)

    Evidence for V’

    We can do similar tests to find a constituent inside VP, consisting of the verb and its object. For example, we can elide a verb and its object, leaving a previous AdvP behind, but we cannot elide AdvP + V, leaving the NP object behind.

    (4) a. They will [VP quickly build a spaceship], and we will [VP slowly _ ]
    b. *They will [VP quickly build a spaceship], and we will [VP _ an orbital station ]
    (ungrammatical if what’s missing is [quickly build])

    For many speakers the contrast is clearer with do so replacement: do so can replace a verb and its object, but can’t replace an adverb and verb if this strands the object.

    (5) a. They will [VP quickly build a spaceship], and we will [VP slowly do so ]
    b. *They will [VP quickly build a spaceship], and we will [VP do so an orbital station ]
    (ungrammatical if what’s missing is [quickly build])

    As with noun phrases, we can represent the fact that the verb and its object form a constituent, to the exclusion of any adverbs, by putting them both under the V’ node.

    6.14: Trees- Introducing X-bar theory (5)

    “Empty” bar levels

    As with the hypothesis that all heads project phrases, even when there are no other words in the phrase, X-bar theory assumes that all phrases contain at least one bar level, even when it is not needed to host a complement.

    So for the sentence in (6), we would have the tree in Figure 6.9, where every phrase has a bar level even though none of the phrases we’ve drawn includes a complement:

    (6) The spaceships landed.
    6.14: Trees- Introducing X-bar theory (6)

    This tree also illustrates something that’s still missing from our implementation of X-bar theory: we’ve said that every phrase has to have a head, but our sentences are currently headless. In the next section we turn to the proposal that all sentences are projected from a tense head.

    Check your understanding

    Coming soon!

    Navigation

    If you are following the alternative path through the chapter that interleaves core concepts with tree structures, the previous section was 6.13 From constituency to tree diagrams and the next section is 6.15 Trees: Sentences as TPs.

    6.14: Trees- Introducing X-bar theory (2024)
    Top Articles
    What the Black Church Can Teach Us About Lent
    Easy Naan Bread Recipe (yeast-free)
    Victor Spizzirri Linkedin
    Cranes For Sale in United States| IronPlanet
    Unit 30 Quiz: Idioms And Pronunciation
    Craigslist Motorcycles Jacksonville Florida
    Black Gelato Strain Allbud
    Craigslist Kennewick Pasco Richland
    Melfme
    Jasmine
    Catsweb Tx State
    Oriellys St James Mn
    Qhc Learning
    10 Great Things You Might Know Troy McClure From | Topless Robot
    Identogo Brunswick Ga
    24 Hour Walmart Detroit Mi
    Magic Mike's Last Dance Showtimes Near Marcus Cedar Creek Cinema
    Carson Municipal Code
    Unity - Manual: Scene view navigation
    Accuweather Mold Count
    Football - 2024/2025 Women’s Super League: Preview, schedule and how to watch
    1973 Coupe Comparo: HQ GTS 350 + XA Falcon GT + VH Charger E55 + Leyland Force 7V
    Mj Nails Derby Ct
    Rochester Ny Missed Connections
    Student Portal Stvt
    Impact-Messung für bessere Ergebnisse « impact investing magazin
    Pioneer Library Overdrive
    Cornedbeefapproved
    Dr Seuss Star Bellied Sneetches Pdf
    Kqelwaob
    Mobile crane from the Netherlands, used mobile crane for sale from the Netherlands
    How often should you visit your Barber?
    ATM, 3813 N Woodlawn Blvd, Wichita, KS 67220, US - MapQuest
    Frommer's Belgium, Holland and Luxembourg (Frommer's Complete Guides) - PDF Free Download
    Angela Muto Ronnie's Mom
    Moses Lake Rv Show
    Where Do They Sell Menudo Near Me
    Omnistorm Necro Diablo 4
    Ljw Obits
    Emerge Ortho Kronos
    Oriellys Tooele
    Jason Brewer Leaving Fox 25
    PruittHealth hiring Certified Nursing Assistant - Third Shift in Augusta, GA | LinkedIn
    Verizon Outage Cuyahoga Falls Ohio
    Ssc South Carolina
    Holzer Athena Portal
    Legs Gifs
    Sml Wikia
    March 2023 Wincalendar
    Black Adam Showtimes Near Cinemark Texarkana 14
    Epower Raley's
    7 National Titles Forum
    Latest Posts
    Article information

    Author: Carmelo Roob

    Last Updated:

    Views: 6159

    Rating: 4.4 / 5 (65 voted)

    Reviews: 80% of readers found this page helpful

    Author information

    Name: Carmelo Roob

    Birthday: 1995-01-09

    Address: Apt. 915 481 Sipes Cliff, New Gonzalobury, CO 80176

    Phone: +6773780339780

    Job: Sales Executive

    Hobby: Gaming, Jogging, Rugby, Video gaming, Handball, Ice skating, Web surfing

    Introduction: My name is Carmelo Roob, I am a modern, handsome, delightful, comfortable, attractive, vast, good person who loves writing and wants to share my knowledge and understanding with you.