What speed should I drive to get maximum fuel efficiency? (2024)


Martyn Goddard/Getty Images
In general, smaller, lighter, more aerodynamic cars will get their best mileage at higher speeds. Bigger, heavier, less aerodynamic vehicles will get their best mileage at lower speeds. See sports car pictures.

This is actually a pretty complicated question. What you are asking is what constant speed will give the best mileage. We won't talk about stops and starts. We'll assume you are going on a very long highway trip and want to know what speed will give you the best mileage. We'll start by discussing how much power it takes to push the car down the road.

The power to push a car down the road varies with the speed the car is traveling. The power required follows an equation of the following form:

road load power = av + bv² + cv³

The letter v represents the velocity of the car, and the letters a, b and c represent three different constants:

  • The a component comes mostly from the rolling resistance of the tires, and friction in the car's components, like drag from the brake pads, or friction in the wheel bearings.
  • The b component also comes from friction in components, and from the rolling resistance in the tires. But it also comes from the power used by the various pumps in the car.
  • The c component comes mostly from things that affect aerodynamic drag like the frontal area, drag coefficient and density of the air.

These constants will be different for every car. But the bottom line is, if you double your speed, this equation says that you will increase the power required by much more than double. A hypothetical medium sized SUV that requires 20 horsepower at 50 mph might require 100 horsepower at 100 mph.

You can also see from the equation that if the velocity v is 0, the power required is also 0. If the velocity is very small then the power required is also very small. So you might be thinking that you would get the best mileage at a really slow speed like 1 mph.

But there is something going on in the engine that eliminates this theory. If your car is going 0 mph your engine is still running. Just to keep the cylinders moving and the various fans, pumps and generators running consumes a certain amount of fuel. And depending on how many accessories (such as headlights and air conditioning) you have running, your car will use even more fuel.

So even when the car is sitting still it uses quite a lot of fuel. Cars get the very worst mileage at 0 mph; they use gasoline but don't cover any miles. When you put the car in drive and start moving at say 1 mph, the car uses only a tiny bit more fuel, because the road load is very small at 1 mph. At this speed the car uses about the same amount of fuel, but it went 1 mile in an hour. This represents a dramatic increase in mileage. Now if the car goes 2 mph, again it uses only a tiny bit more fuel, but goes twice as far. The mileage almost doubled!

Advertisem*nt

Efficiency of an Engine

In effect the efficiency of the engine is improving. It uses a fixedamount of fuel to power itself and the accessories, and a variableamount of fuel depending on the power required to keep the car going ata given speed. So in terms of fuel used per mile, the faster the cargoes, the better use we make of that fixed amount of fuel required.

This trend continues to a point. Eventually, that road load curvecatches up with us. Once the speed gets up into the 40 mph range each 1mph increase in speed represents a significant increase in powerrequired. Eventually, the power required increases more than theefficiency of the engine improves. At this point the mileage startsdropping. Let's plug some speeds into our equation and see how a 1 mphincrease from 2 to 3 mph compares with a 1 mph increase from 50 to 51mph. To make things easy we'll assume a, b and c are all equal to 1.

Speed
Equation
Result
3 mph
3+3²+3³
39
2 mph
2+2²+2³
14
Power Increase
25
51 mph
51+51²+51³
135,303
50 mph
50+50²+50³
127,550
Power Increase
7,753

You can see that the increase in power required to go from 50 to 51 mph is much greater than to go from 2 to 3 mph.

So, for most cars, the "sweet spot" on the speedometer is in the rangeof 40-60 mph. Cars with a higher road load will reach the sweet spot ata lower speed. Some of the main factors that determine the road load ofthe car are:

  • Coefficient of drag. This is an indicator of how aerodynamic acar is due only to its shape. The most aerodynamic cars today have adrag coefficient that is about half that of some pickups and SUVs.
  • Frontal area. This depends mostly on the size of the car. Big SUVs have more than double the frontal area of some small cars.
  • Weight. This affects the amount of drag the tires put on the car. Big SUVs can weigh two to three times what the smallest cars weigh.

In general, smaller, lighter, more aerodynamic cars will get their bestmileage at higher speeds. Bigger, heavier, less aerodynamic vehicleswill get their best mileage at lower speeds.

If you drive your car in the "sweet spot" you will get the bestpossible mileage for that car. If you go faster or slower, the mileagewill get worse, but the closer you drive to the sweet spot the bettermileage you will get.

Advertisem*nt

Lots More Information

Related Articles

  • Car Smarts: Green Driving
  • How a Hybrid Car Works
  • How Gas Prices Work
  • How Fuel Cells Work
  • How Electric Cars Work
  • How GM's Hy-wire Works
  • How to Start a Carpool
  • Can a car get 100 miles per gallon?

More Great Links

What speed should I drive to get maximum fuel efficiency? (2024)
Top Articles
[Solved] Which government has become the world's first government
Credit Cards for College Students | Capital One
How To Fix Epson Printer Error Code 0x9e
Somboun Asian Market
Plaza Nails Clifton
Mopaga Game
Driving Directions To Fedex
Chris wragge hi-res stock photography and images - Alamy
Brgeneral Patient Portal
Recent Obituaries Patriot Ledger
Fototour verlassener Fliegerhorst Schönwald [Lost Place Brandenburg]
Lesson 3 Homework Practice Measures Of Variation Answer Key
Goldsboro Daily News Obituaries
Skylar Vox Bra Size
5808 W 110Th St Overland Park Ks 66211 Directions
O'reilly's Auto Parts Closest To My Location
Lax Arrivals Volaris
iOS 18 Hadir, Tapi Mana Fitur AI Apple?
Brett Cooper Wikifeet
Hermitcraft Texture Pack
Christina Steele And Nathaniel Hadley Novel
U Of Arizona Phonebook
College Basketball Picks: NCAAB Picks Against The Spread | Pickswise
SN100C, An Australia Trademark of Nihon Superior Co., Ltd.. Application Number: 2480607 :: Trademark Elite Trademarks
Gotcha Rva 2022
6892697335
Unreasonable Zen Riddle Crossword
Stickley Furniture
Jail Roster Independence Ks
Tu Housing Portal
WOODSTOCK CELEBRATES 50 YEARS WITH COMPREHENSIVE 38-CD DELUXE BOXED SET | Rhino
Frequently Asked Questions - Hy-Vee PERKS
Armor Crushing Weapon Crossword Clue
Current Time In Maryland
Storelink Afs
A Small Traveling Suitcase Figgerits
Chattanooga Booking Report
Rocketpult Infinite Fuel
Drabcoplex Fishing Lure
Muma Eric Rice San Mateo
Bitchinbubba Face
Ludvigsen Mortuary Fremont Nebraska
Empires And Puzzles Dark Chest
Sams Gas Price Sanford Fl
21 Alive Weather Team
Iupui Course Search
Caesars Rewards Loyalty Program Review [Previously Total Rewards]
Big Brother 23: Wiki, Vote, Cast, Release Date, Contestants, Winner, Elimination
Food and Water Safety During Power Outages and Floods
4Chan Zelda Totk
antelope valley for sale "lancaster ca" - craigslist
Latest Posts
Article information

Author: Merrill Bechtelar CPA

Last Updated:

Views: 5712

Rating: 5 / 5 (70 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Merrill Bechtelar CPA

Birthday: 1996-05-19

Address: Apt. 114 873 White Lodge, Libbyfurt, CA 93006

Phone: +5983010455207

Job: Legacy Representative

Hobby: Blacksmithing, Urban exploration, Sudoku, Slacklining, Creative writing, Community, Letterboxing

Introduction: My name is Merrill Bechtelar CPA, I am a clean, agreeable, glorious, magnificent, witty, enchanting, comfortable person who loves writing and wants to share my knowledge and understanding with you.