The aging clock: circadian rhythms and later life (2024)

1. National Institute on Aging. Global Health and Aging. Report 11-7737. Bethesda, Maryland, USA: NIH, US Departments of Health and Human Services; 2011. [Google Scholar]

2. Kondratov RV. A role of the circadian system and circadian proteins in aging. Ageing Res Rev. 2007;6(1):12–27. doi:10.1016/j.arr.2007.02.003. [PubMed] [CrossRef] [Google Scholar]

3. Kondratova AA, Kondratov RV. The circadian clock and pathology of the ageing brain. Nat Rev Neurosci. 2012;13(5):325–335. [PMC free article] [PubMed] [Google Scholar]

4. Mattis J, Sehgal A. Circadian rhythms, sleep, and disorders of aging. Trends Endocrinol Metab. 2016;27(4):192–203. doi:10.1016/j.tem.2016.02.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Abbott SM, Videnovic A. Chronic sleep disturbance and neural injury: links to neurodegenerative disease. Nat Sci Sleep. 2016;8:55–61. [PMC free article] [PubMed] [Google Scholar]

6. Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME. Breast cancer and circadian disruption from electric lighting in the modern world. CA Cancer J Clin. 2014;64(3):207–218. doi:10.3322/caac.21218. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. McFadden E, Jones ME, Schoemaker MJ, Ashworth A, Swerdlow AJ. The relationship between obesity and exposure to light at night: cross-sectional analyses of over 100,000 women in the Breakthrough Generations Study. Am J Epidemiol. 2014;180(3):245–250. doi:10.1093/aje/kwu117. [PubMed] [CrossRef] [Google Scholar]

8. Lucassen EA, et al. Environmental 24-hr cycles are essential for health. Curr Biol. 2016;26(14):1843–1853. doi:10.1016/j.cub.2016.05.038. [PubMed] [CrossRef] [Google Scholar]

9. Morris CJ, Purvis TE, Hu K, Scheer FA. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci U S A. 2016;113(10):E1402–E1411. doi:10.1073/pnas.1516953113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Arendt J. Biological rhythms during residence in polar regions. Chronobiol Int. 2012;29(4):379–394. doi:10.3109/07420528.2012.668997. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol. 2010;72:551–577. doi:10.1146/annurev-physiol-021909-135919. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Dibner C, Schibler U. Circadian timing of metabolism in animal models and humans. J Intern Med. 2015;277(5):513–527. doi:10.1111/joim.12347. [PubMed] [CrossRef] [Google Scholar]

13. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445–462. doi:10.1146/annurev-neuro-060909-153128. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Huang W, Ramsey KM, Marcheva B, Bass J. Circadian rhythms, sleep, and metabolism. J Clin Invest. 2011;121(6):2133–2141. doi:10.1172/JCI46043. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Duffield GE. DNA microarray analyses of circadian timing: the genomic basis of biological time. J Neuroendocrinol. 2003;15(10):991–1002. doi:10.1046/j.1365-2826.2003.01082.x. [PubMed] [CrossRef] [Google Scholar]

16. Challet E. Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology. 2007;148(12):5648–5655. doi:10.1210/en.2007-0804. [PubMed] [CrossRef] [Google Scholar]

17. Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4(2):97–110. [PubMed] [Google Scholar]

18. Carrier J, Monk TH, Buysse DJ, Kupfer DJ. Sleep and morningness-eveningness in the ‘middle’ years of life (20–59 y) J Sleep Res. 1997;6(4):230–237. doi:10.1111/j.1365-2869.1997.00230.x. [PubMed] [CrossRef] [Google Scholar]

19. Roenneberg T, et al. Epidemiology of the human circadian clock. Sleep Med Rev. 2007;11(6):429–438. doi:10.1016/j.smrv.2007.07.005. [PubMed] [CrossRef] [Google Scholar]

20. Yoon C, May CP, Hasher L. Aging, circadian arousal patterns, and cognition. In: Schwarz N, Park D, Knauper B, Sudman S, eds. Cognition, Aging, and Self-Reports. Philadelphia, Pennsylvania, USA: Psychology Press; 1999:117–143. [Google Scholar]

21. Broms U, et al. Long-term consistency of diurnal-type preferences among men. Chronobiol Int. 2014;31(2):182–188. doi:10.3109/07420528.2013.836534. [PubMed] [CrossRef] [Google Scholar]

22. Wyatt JK, Ritz-De Cecco A, Czeisler CA, Dijk DJ. Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. Am J Physiol. 1999;277(4 pt 2):R1152–R1163. [PubMed] [Google Scholar]

23. Schmidt C, Peigneux P, Cajochen C, Collette F. Adapting test timing to the sleep-wake schedule: effects on diurnal neurobehavioral performance changes in young evening and older morning chronotypes. Chronobiol Int. 2012;29(4):482–490. doi:10.3109/07420528.2012.658984. [PubMed] [CrossRef] [Google Scholar]

24. May CP. Synchrony effects in cognition: the costs and a benefit. Psychon Bull Rev. 1999;6(1):142–147. doi:10.3758/BF03210822. [PubMed] [CrossRef] [Google Scholar]

25. Hasher L, Goldstein D, May CP. It’s about time: circadian rhythms, memory, and aging. In: Izawa C, Ohta N, eds. Human Learning and Memory: Advances in Theory and Application: The 4th Tsukuba International Conference on Memory. Mahwah, New Jersey, USA: Lawrence Erlbaum Associates; 2005:199–217. [Google Scholar]

26. Monk TH, Buysse DJ, Reynolds CF, Kupfer DJ. Inducing jet lag in older people: adjusting to a 6-hour phase advance in routine. Exp Gerontol. 1993;28(2):119–133. doi:10.1016/0531-5565(93)90002-U. [PubMed] [CrossRef] [Google Scholar]

27. Monk TH, Buysse DJ, Carrier J, Kupfer DJ. Inducing jet-lag in older people: directional asymmetry. J Sleep Res. 2000;9(2):101–116. doi:10.1046/j.1365-2869.2000.00184.x. [PubMed] [CrossRef] [Google Scholar]

28. Davidson AJ, Sellix MT, Daniel J, Yamazaki S, Menaker M, Block GD. Chronic jet-lag increases mortality in aged mice. Curr Biol. 2006;16(21):R914–R916. doi:10.1016/j.cub.2006.09.058. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Asai M, et al. Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. J Neurosci Res. 2001;66(6):1133–1139. [PubMed] [Google Scholar]

30. Kolker DE, f*ckuyama H, Huang DS, Takahashi JS, Horton TH, Turek FW. Aging alters circadian and light-induced expression of clock genes in golden hamsters. J Biol Rhythms. 2003;18(2):159–169. doi:10.1177/0748730403251802. [PubMed] [CrossRef] [Google Scholar]

31. Zhang Y, Kornhauser JM, Zee PC, Mayo KE, Takahashi JS, Turek FW. Effects of aging on light-induced phase-shifting of circadian behavioral rhythms, fos expression and CREB phosphorylation in the hamster suprachiasmatic nucleus. Neuroscience. 1996;70(4):951–961. doi:10.1016/0306-4522(95)00408-4. [PubMed] [CrossRef] [Google Scholar]

32. Duffy JF, Zeitzer JM, Czeisler CA. Decreased sensitivity to phase-delaying effects of moderate intensity light in older subjects. Neurobiol Aging. 2007;28(5):799–807. doi:10.1016/j.neurobiolaging.2006.03.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Painting, firefighting, and shiftwork. IARC Monogr Eval Carcinog Risks Hum. 2010;98:9–764. [PMC free article] [PubMed] [Google Scholar]

34. Duffy JF, Dijk DJ, Klerman EB, Czeisler CA. Later endogenous circadian temperature nadir relative to an earlier wake time in older people. Am J Physiol. 1998;275(5 pt 2):R1478–R1487. [PubMed] [Google Scholar]

35. Duffy JF, Zeitzer JM, Rimmer DW, Klerman EB, Dijk DJ, Czeisler CA. Peak of circadian melatonin rhythm occurs later within the sleep of older subjects. Am J Physiol Endocrinol Metab. 2002;282(2):E297–E303. doi:10.1152/ajpendo.00268.2001. [PubMed] [CrossRef] [Google Scholar]

36. Dijk DJ, Duffy JF, Czeisler CA. Contribution of circadian physiology and sleep homeostasis to age-related changes in human sleep. Chronobiol Int. 2000;17(3):285–311. doi:10.1081/CBI-100101049. [PubMed] [CrossRef] [Google Scholar]

37. Hayashi Y, Endo S. All-night sleep polygraphic recordings of healthy aged persons: REM and slow-wave sleep. Sleep. 1982;5(3):277–283. [PubMed] [Google Scholar]

38. Zhdanova, Masuda K, Quasarano-Kourkoulis C, Rosene DL, Killiany RJ, Wang S. Aging of intrinsic circadian rhythms and sleep in a diurnal nonhuman primate, Macaca mulatta. J Biol Rhythms. 2011;26(2):149–159. doi:10.1177/0748730410395849. [PubMed] [CrossRef] [Google Scholar]

39. Naylor E, Buxton OM, Bergmann BM, Easton A, Zee PC, Turek FW. Effects of aging on sleep in the golden hamster. Sleep. 1998;21(7):687–693. [PubMed] [Google Scholar]

40. Koh K, Evans JM, Hendricks JC, Sehgal A. A Drosophila model for age-associated changes in sleep:wake cycles. Proc Natl Acad Sci U S A. 2006;103(37):13843–13847. doi:10.1073/pnas.0605903103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Van Cauter E, Leproult R, Plat L. Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA. 2000;284(7):861–868. doi:10.1001/jama.284.7.861. [PubMed] [CrossRef] [Google Scholar]

42. Carskadon MA, Brown ED, Dement WC. Sleep fragmentation in the elderly: relationship to daytime sleep tendency. Neurobiol Aging. 1982;3(4):321–327. doi:10.1016/0197-4580(82)90020-3. [PubMed] [CrossRef] [Google Scholar]

43. Huang YL, Liu RY, Wang QS, Van Someren EJ, Xu H, Zhou JN. Age-associated difference in circadian sleep-wake and rest-activity rhythms. Physiol Behav. 2002;76(4–5):597–603. [PubMed] [Google Scholar]

44. Ohayon MM, Vecchierini MF. Daytime sleepiness and cognitive impairment in the elderly population. Arch Intern Med. 2002;162(2):201–208. doi:10.1001/archinte.162.2.201. [PubMed] [CrossRef] [Google Scholar]

45. Stone KL, et al. Sleep disturbances and risk of falls in older community-dwelling men: the outcomes of Sleep Disorders in Older Men (MrOS Sleep) Study. J Am Geriatr Soc. 2014;62(2):299–305. doi:10.1111/jgs.12649. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Borbély AA, Daan S, Wirz-Justice A, Deboer T. The two-process model of sleep regulation: a reappraisal. J Sleep Res. 2016;25(2):131–143. doi:10.1111/jsr.12371. [PubMed] [CrossRef] [Google Scholar]

47. Dijk DJ, Czeisler CA. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci. 1995;15(5 pt 1):3526–3538. [PMC free article] [PubMed] [Google Scholar]

48. Schmidt C, Peigneux P, Cajochen C. Age-related changes in sleep and circadian rhythms: impact on cognitive performance and underlying neuroanatomical networks. Front Neurol. 2012;3:118. [PMC free article] [PubMed] [Google Scholar]

49. Refinetti R, Menaker M. The circadian rhythm of body temperature. Physiol Behav. 1992;51(3):613–637. doi:10.1016/0031-9384(92)90188-8. [PubMed] [CrossRef] [Google Scholar]

50. Czeisler CA, et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science. 1999;284(5423):2177–2181. doi:10.1126/science.284.5423.2177. [PubMed] [CrossRef] [Google Scholar]

51. Czeisler CA, et al. Association of sleep-wake habits in older people with changes in output of circadian pacemaker. Lancet. 1992;340(8825):933–936. doi:10.1016/0140-6736(92)92817-Y. [PubMed] [CrossRef] [Google Scholar]

52. Vitiello MV, Smallwood RG, Avery DH, Pascualy RA, Martin DC, Prinz PN. Circadian temperature rhythms in young adult and aged men. Neurobiol Aging. 1986;7(2):97–100. doi:10.1016/0197-4580(86)90146-6. [PubMed] [CrossRef] [Google Scholar]

53. Monk TH, Buysse DJ, Reynolds CF, 3rd, Kupfer DJ, Houck PR. Circadian temperature rhythms of older people. Exp Gerontol. 1995;30(5):455–474. doi:10.1016/0531-5565(95)00007-4. [PubMed] [CrossRef] [Google Scholar]

54. Touitou Y, Haus E. Alterations with aging of the endocrine and neuroendocrine circadian system in humans. Chronobiol Int. 2000;17(3):369–390. doi:10.1081/CBI-100101052. [PubMed] [CrossRef] [Google Scholar]

55. Arendt J. Melatonin and human rhythms. Chronobiol Int. 2006;23(1–2):21–37. [PubMed] [Google Scholar]

56. Pack W, Hill DD, Wong KY. Melatonin modulates M4-type ganglion-cell photoreceptors. Neuroscience. 2015;303:178–188. doi:10.1016/j.neuroscience.2015.06.046. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Kennaway DJ, Lushington K, Dawson D, Lack L, van den Heuvel C, Rogers N. Urinary 6-sulfatoxymelatonin excretion and aging: new results and a critical review of the literature. J Pineal Res. 1999;27(4):210–220. doi:10.1111/j.1600-079X.1999.tb00617.x. [PubMed] [CrossRef] [Google Scholar]

58. Zhao ZY, Xie Y, Fu YR, Bogdan A, Touitou Y. Aging and the circadian rhythm of melatonin: a cross-sectional study of Chinese subjects 30–110 yr of age. Chronobiol Int. 2002;19(6):1171–1182. doi:10.1081/CBI-120015958. [PubMed] [CrossRef] [Google Scholar]

59. Touitou Y, et al. Age- and mental health-related circadian rhythms of plasma levels of melatonin, prolactin, luteinizing hormone and follicle-stimulating hormone in man. J Endocrinol. 1981;91(3):467–475. doi:10.1677/joe.0.0910467. [PubMed] [CrossRef] [Google Scholar]

60. Reiter RJ, Richardson BA, Johnson LY, Ferguson BN, Dinh DT. Pineal melatonin rhythm: reduction in aging Syrian hamsters. Science. 1980;210(4476):1372–1373. doi:10.1126/science.7434032. [PubMed] [CrossRef] [Google Scholar]

61. Zeitzer JM, Daniels JE, Duffy JF, et al. Do plasma melatonin concentrations decline with age? Am J Med. 1999;107(5):432–436. doi:10.1016/S0002-9343(99)00266-1. [PubMed] [CrossRef] [Google Scholar]

62. Kin NM, Nair NP, Schwartz G, Thavundayil JX, Annable L. Secretion of melatonin in healthy elderly subjects: a longitudinal study. Ann N Y Acad Sci. 2004;1019:326–329. doi:10.1196/annals.1297.055. [PubMed] [CrossRef] [Google Scholar]

63. Waller KL, et al. Melatonin and cortisol profiles in late midlife and their association with age-related changes in cognition. Nat Sci Sleep. 2016;8:47–53. [PMC free article] [PubMed] [Google Scholar]

64. Wu YH, Zhou JN, Van Heerikhuize J, Jockers R, Swaab DF. Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease. Neurobiol Aging. 2007;28(8):1239–1247. doi:10.1016/j.neurobiolaging.2006.06.002. [PubMed] [CrossRef] [Google Scholar]

65. Videnovic A, et al. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol. 2014;71(4):463–469. doi:10.1001/jamaneurol.2013.6239. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Wu YH, et al. Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages. J Clin Endocrinol Metab. 2003;88(12):5898–5906. doi:10.1210/jc.2003-030833. [PubMed] [CrossRef] [Google Scholar]

67. Videnovic A, Lazar AS, Barker RA, Overeem S. ‘The clocks that time us’ — circadian rhythms in neurodegenerative disorders. Nat Rev Neurol. 2014;10(12):683–693. doi:10.1038/nrneurol.2014.206. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Videnovic A, Zee PC. Consequences of Circadian Disruption on Neurologic Health. Sleep Med Clin. 2015;10(4):469–480. doi:10.1016/j.jsmc.2015.08.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Oster H, et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 2006;4(2):163–173. doi:10.1016/j.cmet.2006.07.002. [PubMed] [CrossRef] [Google Scholar]

70. Cuesta M, Cermakian N, Boivin DB. Glucocorticoids entrain molecular clock components in human peripheral cells. FASEB J. 2015;29(4):1360–1370. doi:10.1096/fj.14-265686. [PubMed] [CrossRef] [Google Scholar]

71. Amir S, Lamont EW, Robinson B, Stewart J. A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis. J Neurosci. 2004;24(4):781–790. doi:10.1523/JNEUROSCI.4488-03.2004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Segall LA, Perrin JS, Walker CD, Stewart J, Amir S. Glucocorticoid rhythms control the rhythm of expression of the clock protein, Period2, in oval nucleus of the bed nucleus of the stria terminalis and central nucleus of the amygdala in rats. Neuroscience. 2006;140(3):753–757. doi:10.1016/j.neuroscience.2006.03.037. [PubMed] [CrossRef] [Google Scholar]

73. Balsalobre A, et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 2000;289(5488):2344–2347. doi:10.1126/science.289.5488.2344. [PubMed] [CrossRef] [Google Scholar]

74. Ohmori K, et al. Circadian rhythms and the effect of glucocorticoids on expression of the clock gene period1 in canine peripheral blood mononuclear cells. Vet J. 2013;196(3):402–407. doi:10.1016/j.tvjl.2012.10.010. [PubMed] [CrossRef] [Google Scholar]

75. Touitou Y, et al. Adrenal circadian system in young and elderly human subjects: a comparative study. J Endocrinol. 1982;93(2):201–210. doi:10.1677/joe.0.0930201. [PubMed] [CrossRef] [Google Scholar]

76. Van Cauter E, Leproult R, Kupfer DJ. Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. J Clin Endocrinol Metab. 1996;81(7):2468–2473. [PubMed] [Google Scholar]

77. Sherman B, Wysham C, Pfohl B. Age-related changes in the circadian rhythm of plasma cortisol in man. J Clin Endocrinol Metab. 1985;61(3):439–443. doi:10.1210/jcem-61-3-439. [PubMed] [CrossRef] [Google Scholar]

78. Breen DP, et al. Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol. 2014;71(5):589–595. doi:10.1001/jamaneurol.2014.65. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Hartmann A, Veldhuis JD, Deuschle M, Standhardt H, Heuser I. Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: ultradian secretory pulsatility and diurnal variation. Neurobiol Aging. 1997;18(3):285–289. doi:10.1016/S0197-4580(97)80309-0. [PubMed] [CrossRef] [Google Scholar]

80. Hatfield CF, Herbert J, van Someren EJ, Hodges JR, Hastings MH. Disrupted daily activity/rest cycles in relation to daily cortisol rhythms of home-dwelling patients with early Alzheimer’s dementia. Brain. 2004;127(Pt 5):1061–1074. [PubMed] [Google Scholar]

81. Wijsman CA, et al. Ambulant 24-h glucose rhythms mark calendar and biological age in apparently healthy individuals. Aging Cell. 2013;12(2):207–213. doi:10.1111/acel.12042. [PubMed] [CrossRef] [Google Scholar]

82. Singh R, Sharma S, Singh RK, Cornelissen G. Circadian time structure of circulating plasma lipid components in healthy indians of different age groups. Indian J Clin Biochem. 2016;31(2):215–223. doi:10.1007/s12291-015-0519-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Luo W, et al. Old flies have a robust central oscillator but weaker behavioral rhythms that can be improved by genetic and environmental manipulations. Aging Cell. 2012;11(3):428–438. doi:10.1111/j.1474-9726.2012.00800.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD. Effects of aging on central and peripheral mammalian clocks. Proc Natl Acad Sci U S A. 2002;99(16):10801–10806. doi:10.1073/pnas.152318499. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Sohail S, Yu L, Bennett DA, Buchman AS, Lim AS. Irregular 24-hour activity rhythms and the metabolic syndrome in older adults. Chronobiol Int. 2015;32(6):802–813. doi:10.3109/07420528.2015.1041597. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Scheiermann C, Kunisaki Y, Frenette PS. Circadian control of the immune system. Nat Rev Immunol. 2013;13(3):190–198. doi:10.1038/nri3386. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A. Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science. 2013;341(6153):1483–1488. doi:10.1126/science.1240636. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Deleidi M, Jäggle M, Rubino G. Immune aging, dysmetabolism, and inflammation in neurological diseases. Front Neurosci. 2015;9:172. [PMC free article] [PubMed] [Google Scholar]

89. Chen CY, et al. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc Natl Acad Sci U S A. 2016;113(1):206–211. doi:10.1073/pnas.1508249112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Ando H, et al. Influence of age on clock gene expression in peripheral blood cells of healthy women. J Gerontol A Biol Sci Med Sci. 2010;65(1):9–13. [PubMed] [Google Scholar]

91. Nakamura TJ, et al. Age-related changes in the circadian system unmasked by constant conditions(1,2,3) eNeuro. 2015;2(4):(4) [PMC free article] [PubMed] [Google Scholar]

92. Kolker DE, Vitaterna MH, Fruechte EM, Takahashi JS, Turek FW. Effects of age on circadian rhythms are similar in wild-type and heterozygous Clock mutant mice. Neurobiol Aging. 2004;25(4):517–523. doi:10.1016/j.neurobiolaging.2003.06.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Bonaconsa M, Malpeli G, Montaruli A, Carandente F, Grassi-Zucconi G, Bentivoglio M. Differential modulation of clock gene expression in the suprachiasmatic nucleus, liver and heart of aged mice. Exp Gerontol. 2014;55:70–79. doi:10.1016/j.exger.2014.03.011. [PubMed] [CrossRef] [Google Scholar]

94. Marcheva B, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466(7306):627–631. doi:10.1038/nature09253. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Papagiannakopoulos T, et al. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 2016;24(2):324–331. doi:10.1016/j.cmet.2016.07.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 2006;20(14):1868–1873. doi:10.1101/gad.1432206. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Krishnan N, Kretzschmar D, Raksh*t K, Chow E, Giebultowicz JM. The circadian clock gene period extends healthspan in aging Drosophila melanogaster. Aging (Albany NY) 2009;1(11):937–948. [PMC free article] [PubMed] [Google Scholar]

98. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 2009;324(5927):654–657. doi:10.1126/science.1170803. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Hurd MW, Ralph MR. The significance of circadian organization for longevity in the golden hamster. J Biol Rhythms. 1998;13(5):430–436. doi:10.1177/074873098129000255. [PubMed] [CrossRef] [Google Scholar]

100. Cai A, Scarbrough K, Hinkle DA, Wise PM. Fetal grafts containing suprachiasmatic nuclei restore the diurnal rhythm of CRH and POMC mRNA in aging rats. Am J Physiol. 1997;273(5 pt 2):R1764–R1770. [PubMed] [Google Scholar]

101. Li H, Satinoff E. Fetal tissue containing the suprachiasmatic nucleus restores multiple circadian rhythms in old rats. Am J Physiol. 1998;275(6 pt 2):R1735–R1744. [PubMed] [Google Scholar]

102. Swaab DF, Fliers E, Partiman TS. The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res. 1985;342(1):37–44. doi:10.1016/0006-8993(85)91350-2. [PubMed] [CrossRef] [Google Scholar]

103. Zhou JN, Swaab DF. Activation and degeneration during aging: a morphometric study of the human hypothalamus. Microsc Res Tech. 1999;44(1):36–48. doi:10.1002/(SICI)1097-0029(19990101)44:1<36::AID-JEMT5>3.0.CO;2-F. [PubMed] [CrossRef] [Google Scholar]

104. Tsukahara S, Tanaka S, Ishida K, Hoshi N, Kitagawa H. Age-related change and its sex differences in histoarchitecture of the hypothalamic suprachiasmatic nucleus of F344/N rats. Exp Gerontol. 2005;40(3):147–155. doi:10.1016/j.exger.2004.10.003. [PubMed] [CrossRef] [Google Scholar]

105. Madeira MD, Sousa N, Santer RM, Paula-Barbosa MM, Gundersen HJ. Age and sex do not affect the volume, cell numbers, or cell size of the suprachiasmatic nucleus of the rat: an unbiased stereological study. J Comp Neurol. 1995;361(4):585–601. doi:10.1002/cne.903610404. [PubMed] [CrossRef] [Google Scholar]

106. Hofman MA, Swaab DF. Alterations in circadian rhythmicity of the vasopressin-producing neurons of the human suprachiasmatic nucleus (SCN) with aging. Brain Res. 1994;651(1-2):134–142. doi:10.1016/0006-8993(94)90689-0. [PubMed] [CrossRef] [Google Scholar]

107. Zhou JN, Hofman MA, Swaab DF. VIP neurons in the human SCN in relation to sex, age, and Alzheimer’s disease. Neurobiol Aging. 1995;16(4):571–576. doi:10.1016/0197-4580(95)00043-E. [PubMed] [CrossRef] [Google Scholar]

108. Chee CA, Roozendaal B, Swaab DF, Goudsmit E, Mirmiran M. Vasoactive intestinal polypeptide neuron changes in the senile rat suprachiasmatic nucleus. Neurobiol Aging. 1988;9(3):307–312. [PubMed] [Google Scholar]

109. Roozendaal B, van Gool WA, Swaab DF, Hoogendijk JE, Mirmiran M. Changes in vasopressin cells of the rat suprachiasmatic nucleus with aging. Brain Res. 1987;409(2):259–264. doi:10.1016/0006-8993(87)90710-4. [PubMed] [CrossRef] [Google Scholar]

110. Cayetanot F, Bentivoglio M, Aujard F. Arginine-vasopressin and vasointestinal polypeptide rhythms in the suprachiasmatic nucleus of the mouse lemur reveal aging-related alterations of circadian pacemaker neurons in a non-human primate. Eur J Neurosci. 2005;22(4):902–910. doi:10.1111/j.1460-9568.2005.04268.x. [PubMed] [CrossRef] [Google Scholar]

111. Wang JL, et al. Suprachiasmatic neuron numbers and rest-activity circadian rhythms in older humans. Ann Neurol. 2015;78(2):317–322. doi:10.1002/ana.24432. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Vasalou C, Herzog ED, Henson MA. Small-world network models of intercellular coupling predict enhanced synchronization in the suprachiasmatic nucleus. J Biol Rhythms. 2009;24(3):243–254. doi:10.1177/0748730409333220. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Palomba M, Nygård M, Florenzano F, Bertini G, Kristensson K, Bentivoglio M. Decline of the presynaptic network, including GABAergic terminals, in the aging suprachiasmatic nucleus of the mouse. J Biol Rhythms. 2008;23(3):220–231. doi:10.1177/0748730408316998. [PubMed] [CrossRef] [Google Scholar]

114. Aton SJ, Huettner JE, Straume M, Herzog ED. GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons. Proc Natl Acad Sci U S A. 2006;103(50):19188–19193. doi:10.1073/pnas.0607466103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Satinoff E, et al. Do the suprachiasmatic nuclei oscillate in old rats as they do in young ones? Am J Physiol. 1993;265(5 pt 2):R1216–R1222. [PubMed] [Google Scholar]

116. Watanabe A, Shibata S, Watanabe S. Circadian rhythm of spontaneous neuronal activity in the suprachiasmatic nucleus of old hamster in vitro. Brain Res. 1995;695(2):237–239. doi:10.1016/0006-8993(95)00713-Z. [PubMed] [CrossRef] [Google Scholar]

117. Nakamura TJ, et al. Age-related decline in circadian output. J Neurosci. 2011;31(28):10201–10205. doi:10.1523/JNEUROSCI.0451-11.2011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Farajnia S, et al. Evidence for neuronal desynchrony in the aged suprachiasmatic nucleus clock. J Neurosci. 2012;32(17):5891–5899. doi:10.1523/JNEUROSCI.0469-12.2012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Nakamura TJ, Takasu NN, Nakamura W. The suprachiasmatic nucleus: age-related decline in biological rhythms. J Physiol Sci. 2016;66(5):367–374. doi:10.1007/s12576-016-0439-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Gavrila AM, Robinson B, Hoy J, Stewart J, Bhargava A, Amir S. Double-stranded RNA-mediated suppression of Period2 expression in the suprachiasmatic nucleus disrupts circadian locomotor activity in rats. Neuroscience. 2008;154(2):409–414. doi:10.1016/j.neuroscience.2008.04.032. [PubMed] [CrossRef] [Google Scholar]

121. Izumo M, et al. Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. Elife. 2014:3. [PMC free article] [PubMed] [Google Scholar]

122. Banks G, Nolan PM, Peirson SN. Reciprocal interactions between circadian clocks and aging. Mamm Genome. 2016;27(7–8):332–340. [PMC free article] [PubMed] [Google Scholar]

123. McDearmon EL, et al. Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science. 2006;314(5803):1304–1308. doi:10.1126/science.1132430. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Yang G, et al. Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival. Sci Transl Med. 2016;8(324):324ra16. doi:10.1126/scitranslmed.aad3305. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell. 2013;153(7):1448–1460. doi:10.1016/j.cell.2013.05.027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460(7255):587–591. doi:10.1038/nature08197. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Nakahata Y, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134(2):329–340. doi:10.1016/j.cell.2008.07.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Asher G, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134(2):317–328. doi:10.1016/j.cell.2008.06.050. [PubMed] [CrossRef] [Google Scholar]

129. Wang RH, et al. Negative reciprocal regulation between Sirt1 and Per2 modulates the circadian clock and aging. Sci Rep. 2016;6:28633. [PMC free article] [PubMed] [Google Scholar]

130. Valentinuzzi VS, Scarbrough K, Takahashi JS, Turek FW. Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice. Am J Physiol. 1997;273(6 pt 2):R1957–R1964. [PubMed] [Google Scholar]

131. Scheuermaier K, Laffan AM, Duffy JF. Light exposure patterns in healthy older and young adults. J Biol Rhythms. 2010;25(2):113–122. doi:10.1177/0748730410361916. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Shochat T, Martin J, Marler M, Ancoli-Israel S. Illumination levels in nursing home patients: effects on sleep and activity rhythms. J Sleep Res. 2000;9(4):373–379. doi:10.1046/j.1365-2869.2000.00221.x. [PubMed] [CrossRef] [Google Scholar]

133. Kessel L, Lundeman JH, Herbst K, Andersen TV, Larsen M. Age-related changes in the transmission properties of the human lens and their relevance to circadian entrainment. J Cataract Refract Surg. 2010;36(2):308–312. doi:10.1016/j.jcrs.2009.08.035. [PubMed] [CrossRef] [Google Scholar]

134. Hattar S, et al. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature. 2003;424(6944):76–81. [PMC free article] [PubMed] [Google Scholar]

135. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002;295(5557):1065–1070. doi:10.1126/science.1069609. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Kessel L, Siganos G, Jørgensen T, Larsen M. Sleep disturbances are related to decreased transmission of blue light to the retina caused by lens yellowing. Sleep. 2011;34(9):1215–1219. [PMC free article] [PubMed] [Google Scholar]

137. Herbst K, et al. Intrinsically photosensitive retinal ganglion cell function in relation to age: a pupillometric study in humans with special reference to the age-related optic properties of the lens. BMC Ophthalmol. 2012;12:4. [PMC free article] [PubMed] [Google Scholar]

138. Kankipati L, Girkin CA, Gamlin PD. Post-illumination pupil response in subjects without ocular disease. Invest Ophthalmol Vis Sci. 2010;51(5):2764–2769. doi:10.1167/iovs.09-4717. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Asplund R, Lindblad BE. Sleep and sleepiness 1 and 9 months after cataract surgery. Arch Gerontol Geriatr. 2004;38(1):69–75. doi:10.1016/j.archger.2003.08.001. [PubMed] [CrossRef] [Google Scholar]

140. Ayaki M, Muramatsu M, Negishi K, Tsubota K. Improvements in sleep quality and gait speed after cataract surgery. Rejuvenation Res. 2013;16(1):35–42. doi:10.1089/rej.2012.1369. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Brøndsted AE, Lundeman JH, Kessel L. Short wavelength light filtering by the natural human lens and IOLs — implications for entrainment of circadian rhythm. Acta Ophthalmol. 2013;91(1):52–57. doi:10.1111/j.1755-3768.2011.02291.x. [PubMed] [CrossRef] [Google Scholar]

142. Brøndsted AE, et al. The effect of cataract surgery on circadian photoentrainment: a randomized trial of blue-blocking versus neutral intraocular lenses. Ophthalmology. 2015;122(10):2115–2124. doi:10.1016/j.ophtha.2015.06.033. [PubMed] [CrossRef] [Google Scholar]

143. Yan SS, Wang W. The effect of lens aging and cataract surgery on circadian rhythm. Int J Ophthalmol. 2016;9(7):1066–1074. [PMC free article] [PubMed] [Google Scholar]

144. Stephan FK. The “other” circadian system: food as a Zeitgeber. J Biol Rhythms. 2002;17(4):284–292. doi:10.1177/074873002129002591. [PubMed] [CrossRef] [Google Scholar]

145. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14(23):2950–2961. doi:10.1101/gad.183500. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

146. Mistlberger RE, Houpt TA, Moore-Ede MC. Effects of aging on food-entrained circadian rhythms in the rat. Neurobiol Aging. 1990;11(6):619–624. doi:10.1016/0197-4580(90)90027-W. [PubMed] [CrossRef] [Google Scholar]

147. Walcott EC, Tate BA. Entrainment of aged, dysrhythmic rats to a restricted feeding schedule. Physiol Behav. 1996;60(5):1205–1208. doi:10.1016/S0031-9384(96)00215-6. [PubMed] [CrossRef] [Google Scholar]

148. Boulos Z, Rosenwasser AM, Terman M. Feeding schedules and the circadian organization of behavior in the rat. Behav Brain Res. 1980;1(1):39–65. doi:10.1016/0166-4328(80)90045-5. [PubMed] [CrossRef] [Google Scholar]

149. Kent BA. Synchronizing an aging brain: can entraining circadian clocks by food slow Alzheimer’s disease? Front Aging Neurosci. 2014;6:234. [PMC free article] [PubMed] [Google Scholar]

150. Katewa SD, et al. Peripheral circadian clocks mediate dietary restriction-dependent changes in lifespan and fat metabolism in Drosophila. Cell Metab. 2016;23(1):143–154. doi:10.1016/j.cmet.2015.10.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

151. Sellix MT, et al. Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators. J Neurosci. 2012;32(46):16193–16202. doi:10.1523/JNEUROSCI.3559-12.2012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

152. Tahara Y, et al. In vivo monitoring of peripheral circadian clocks in the mouse. Curr Biol. 2012;22(11):1029–1034. doi:10.1016/j.cub.2012.04.009. [PubMed] [CrossRef] [Google Scholar]

153. Wyse CA, Coogan AN, Selman C, Hazlerigg DG, Speakman JR. Association between mammalian lifespan and circadian free-running period: the circadian resonance hypothesis revisited. Biol Lett. 2010;6(5):696–698. doi:10.1098/rsbl.2010.0152. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. Libert S, Bonkowski MS, Pointer K, Pletcher SD, Guarente L. Deviation of innate circadian period from 24 h reduces longevity in mice. Aging Cell. 2012;11(5):794–800. doi:10.1111/j.1474-9726.2012.00846.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

155. Jones SE, et al. Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci. PLoS Genet. 2016;12(8):e1006125. doi:10.1371/journal.pgen.1006125. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

The aging clock: circadian rhythms and later life (2024)
Top Articles
How to Block Vehicle GPS Tracking: Find & Block the Tracker
Can I Buy Mutual Funds With a Margin Account?
Katie Pavlich Bikini Photos
Gamevault Agent
Hocus Pocus Showtimes Near Harkins Theatres Yuma Palms 14
Free Atm For Emerald Card Near Me
Craigslist Mexico Cancun
Hendersonville (Tennessee) – Travel guide at Wikivoyage
Doby's Funeral Home Obituaries
Vardis Olive Garden (Georgioupolis, Kreta) ✈️ inkl. Flug buchen
Select Truck Greensboro
Things To Do In Atlanta Tomorrow Night
Non Sequitur
How To Cut Eelgrass Grounded
Pac Man Deviantart
Alexander Funeral Home Gallatin Obituaries
Craigslist In Flagstaff
Shasta County Most Wanted 2022
Energy Healing Conference Utah
Testberichte zu E-Bikes & Fahrrädern von PROPHETE.
Aaa Saugus Ma Appointment
Geometry Review Quiz 5 Answer Key
Walgreens Alma School And Dynamite
Bible Gateway passage: Revelation 3 - New Living Translation
Yisd Home Access Center
Home
Shadbase Get Out Of Jail
Gina Wilson Angle Addition Postulate
Celina Powell Lil Meech Video: A Controversial Encounter Shakes Social Media - Video Reddit Trend
Walmart Pharmacy Near Me Open
A Christmas Horse - Alison Senxation
Ou Football Brainiacs
Access a Shared Resource | Computing for Arts + Sciences
Pixel Combat Unblocked
Cvs Sport Physicals
Mercedes W204 Belt Diagram
Rogold Extension
'Conan Exiles' 3.0 Guide: How To Unlock Spells And Sorcery
Teenbeautyfitness
Where Can I Cash A Huntington National Bank Check
Facebook Marketplace Marrero La
Nobodyhome.tv Reddit
Topos De Bolos Engraçados
Gregory (Five Nights at Freddy's)
Grand Valley State University Library Hours
Holzer Athena Portal
Hampton In And Suites Near Me
Stoughton Commuter Rail Schedule
Bedbathandbeyond Flemington Nj
Free Carnival-themed Google Slides & PowerPoint templates
Otter Bustr
Selly Medaline
Latest Posts
Article information

Author: Rueben Jacobs

Last Updated:

Views: 5665

Rating: 4.7 / 5 (77 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Rueben Jacobs

Birthday: 1999-03-14

Address: 951 Caterina Walk, Schambergerside, CA 67667-0896

Phone: +6881806848632

Job: Internal Education Planner

Hobby: Candle making, Cabaret, Poi, Gambling, Rock climbing, Wood carving, Computer programming

Introduction: My name is Rueben Jacobs, I am a cooperative, beautiful, kind, comfortable, glamorous, open, magnificent person who loves writing and wants to share my knowledge and understanding with you.