Targeting p53 pathways: mechanisms, structures and advances in therapy (2024)

  • Kastenhuber, E. R. & Lowe, S. W. Putting p53 in context. Cell 170, 1062–1078 (2017).

    Article PubMed PubMed Central CAS Google Scholar

  • Levine, A. J. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer 20, 471–480 (2020).

    Article PubMed CAS Google Scholar

  • ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 578, 82–93 (2020).

  • Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article PubMed PubMed Central CAS Google Scholar

  • Bykov, V. J. N., Eriksson, S. E., Bianchi, J. & Wiman, K. G. Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer. 18, 89–102 (2018).

    Article PubMed CAS Google Scholar

  • Sullivan, K. D., Galbraith, M. D., Andrysik, Z. & Espinosa, J. M. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 25, 133–143 (2018).

    Article PubMed CAS Google Scholar

  • Sager, R. Tumor suppressor genes: the puzzle and the promise. Science 246, 1406–1412 (1989).

    Article PubMed CAS Google Scholar

  • Muller, P. A. J. & Vousden, K. H. p53 mutations in cancer. Nat. Cell Biol. 15, 2–8 (2013).

    Article PubMed CAS Google Scholar

  • Meek, D. W. Tumour suppression by p53: a role for the DNA damage response? Nat. Rev. Cancer 9, 714–723 (2009).

    Article PubMed CAS Google Scholar

  • Wong, K. B. et al. Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc. Natl. Acad. Sci. USA 96, 8438–8442 (1999).

    Article PubMed PubMed Central CAS Google Scholar

  • Kitayner, M. et al. Structural basis of DNA recognition by p53 tetramers. Mol. Cell 22, 741–753 (2006).

    Article PubMed CAS Google Scholar

  • Joerger, A. C. & Fersht, A. R. Structural biology of the tumor suppressor p53 and cancer-associated mutants. Adv. Cancer Res. 97, 1–23 (2007).

    Article PubMed CAS Google Scholar

  • Loh, S. N. Arsenic and an old place: rescuing p53 mutants in cancer. Cancer Cell 39, 140–142 (2021).

    Article PubMed CAS Google Scholar

  • Linzer, D. I. & Levine, A. J. Characterization of a 54 K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43–52 (1979).

    Article PubMed CAS Google Scholar

  • Lane, D. P. & Crawford, L. V. T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261–263 (1979).

    Article PubMed CAS Google Scholar

  • Parada, L. F. et al. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 312, 649–651 (1984).

    Article PubMed CAS Google Scholar

  • Eliyahu, D., Michalovitz, D. & Oren, M. Overproduction of p53 antigen makes established cells highly tumorigenic. Nature 316, 158–160 (1985).

    Article PubMed CAS Google Scholar

  • Lane, D. P. & Benchimol, S. p53: oncogene or anti-oncogene? Genes Dev. 4, 1–8 (1990).

    Article PubMed CAS Google Scholar

  • Nigro, J. M. et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 342, 705–708 (1989).

    Article PubMed CAS Google Scholar

  • Cunningham, J. et al. Expression of p53 and 17p allelic loss in colorectal carcinoma. Cancer Res 52, 1974–1980 (1992).

    PubMed CAS Google Scholar

  • Hinds, P., Finlay, C. & Levine, A. J. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J. Virol. 63, 739–746 (1989).

    Article PubMed PubMed Central CAS Google Scholar

  • Eliyahu, D. et al. Meth A fibrosarcoma cells express two transforming mutant p53 species. Oncogene 3, 313–321 (1988).

    PubMed CAS Google Scholar

  • Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article PubMed CAS Google Scholar

  • Olivero, C. E. et al. p53 Activates the Long Noncoding RNA Pvt1b to Inhibit Myc and Suppress Tumorigenesis. Mol. Cell. 77, 761–774 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Yonish-Rouach, E. et al. The role of p53 as a transcription factor in the induction of apoptosis. Behring Inst. Mitt. 97, 60–71 (1996).

    CAS Google Scholar

  • Wei, C.-L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207–219 (2006).

    Article PubMed CAS Google Scholar

  • Bieging, K. T., Mello, S. S. & Attardi, L. D. Unravelling mechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer 14, 359–370 (2014).

    Article PubMed PubMed Central CAS Google Scholar

  • Lakin, N. & Jackson, S. Regulation of p53 in response to DNA damage. Oncogene 18, 7644–7655 (1999).

    Article PubMed CAS Google Scholar

  • Gu, B. & Zhu, W. Surf the post-translational modification network of p53 regulation. Int. J. Biol. Sci. 8, 672–684 (2012).

    Article PubMed PubMed Central Google Scholar

  • DeHart, C., Chahal, J., Flint, S. & Perlman, D. Extensive post-translational modification of active and inactivated forms of endogenous p53. Mol. Cell Proteom. 13, 1–17 (2014).

    Article CAS Google Scholar

  • Chen, L., Liu, S. & Tao, Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct. Target Ther. 5, 90 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Kruse, J.-P. & Gu, W. SnapShot: p53 posttranslational modifications. Cell 133, 930–30 (2008).

    Article PubMed PubMed Central CAS Google Scholar

  • Aubrey, B. et al. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 25, 104–113 (2018).

    Article PubMed CAS Google Scholar

  • Vaddavalli, P. & Schumacher, B. The p53 network: cellular and systemic DNA damage responses in cancer and aging. Trends Genet 38, 598–612 (2022).

    Article PubMed CAS Google Scholar

  • Ma, M. et al. p53 positively regulates the proliferation of hepatic progenitor cells promoted by laminin-521. Signal Transduct. Target Ther. 7, 290 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell. 11, 577–590 (2003).

    Article PubMed CAS Google Scholar

  • Chipuk, J. E. et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010–1014 (2004).

    Article PubMed CAS Google Scholar

  • Miyash*ta, T. & Reed, J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293–299 (1995).

    Article PubMed CAS Google Scholar

  • Seoane, J., Le, H.-V. & Massagué, J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729–734 (2002).

    Article PubMed CAS Google Scholar

  • Engeland, K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 29, 946–960 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Hafner, A., Bulyk, M., Jambhekar, A. & Lahav, G. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol. 20, 199–210 (2019).

    Article PubMed CAS Google Scholar

  • Sherr, C. J. & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2, 103–112 (2002).

    Article PubMed CAS Google Scholar

  • Sancar, A. DNA repair in humans. Annu. Rev. Genet. 29, 69–105 (1995).

    Article PubMed CAS Google Scholar

  • Sancar, A., Lindsey-Boltz, L. A., Unsal-Kaçmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    Article PubMed CAS Google Scholar

  • Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  • Liu, Y. & Gu, W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin. Cancer Biol. 85, 4–32 (2021).

    Article PubMed PubMed Central Google Scholar

  • Blagih, J., Buck, M. D. & Vousden, K. H. p53, cancer and the immune response. J. Cell Sci. 133, jcs237453 (2020).

    Article PubMed CAS Google Scholar

  • Spike, B. T. & Wahl, G. M. p53, stem cells, and reprogramming: tumor suppression beyond guarding the genome. Genes Cancer 2, 404–419 (2011).

    Article PubMed PubMed Central CAS Google Scholar

  • White, E. Autophagy and p53. Cold Spring Harb. Perspect. Med. 6, a026120 (2016).

    Article PubMed PubMed Central Google Scholar

  • Mrakovcic, M. & Fröhlich, L. p53-mediated molecular control of autophagy in tumor cells. Biomolecules 8, 14 (2018).

    Article PubMed PubMed Central Google Scholar

  • Williams, A. B. & Schumacher, B. p53 in the DNA-damage-repair process. Cold Spring Harb. Perspect. Med. 6, a026070 (2016).

    Article PubMed PubMed Central Google Scholar

  • Adimoolam, S. & Ford, J. M. p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc. Natl. Acad. Sci. USA 99, 12985–12990 (2002).

    Article PubMed PubMed Central CAS Google Scholar

  • Zebian, A. et al. XPC multifaceted roles beyond DNA damage repair: p53-dependent and p53-independent functions of XPC in cell fate decisions. Mutat. Res. Rev. Mutat. Res. 789, 108400 (2022).

    Article PubMed CAS Google Scholar

  • Sugasawa, K. Regulation of damage recognition in mammalian global genomic nucleotide excision repair. Mutat. Res. 685, 29–37 (2010).

    Article PubMed CAS Google Scholar

  • el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article PubMed CAS Google Scholar

  • Narasimha, A. M. et al. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. Elife 3, e02872 (2014).

    Article PubMed PubMed Central Google Scholar

  • Prall, O. W. et al. Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2. J. Biol. Chem. 272, 10882–10894 (1997).

    Article PubMed CAS Google Scholar

  • Harper, J. W. et al. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    Article PubMed CAS Google Scholar

  • Stevaux, O. & Dyson, N. J. A revised picture of the E2F transcriptional network and RB function. Curr. Opin. Cell Biol. 14, 684–691 (2002).

    Article PubMed CAS Google Scholar

  • Basak, S. et al. The metastasis-associated gene Prl-3 is a p53 target involved in cell-cycle regulation. Mol. Cell. 30, 303–314 (2008).

    Article PubMed PubMed Central CAS Google Scholar

  • Doumont, G., Martoriati, A. & Marine, J.-C. PTPRV is a key mediator of p53-induced cell cycle exit. Cell Cycle 4, 1703–1705 (2005).

    Article PubMed CAS Google Scholar

  • Fischer, M., Quaas, M., Steiner, L. & Engeland, K. The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes. Nucleic Acids Res 44, 164–174 (2016).

    Article PubMed CAS Google Scholar

  • Taylor, W. R. & Stark, G. R. Regulation of the G2/M transition by p53. Oncogene 20, 1803–1815 (2001).

    Article PubMed CAS Google Scholar

  • Hermeking, H. et al. 14-3-3sigma is a p53-regulated inhibitor of G2/M progression. Mol. Cell. 1, 3–11 (1997).

    Article PubMed CAS Google Scholar

  • Wang, X. W. et al. GADD45 induction of a G2/M cell cycle checkpoint. Proc. Natl. Acad. Sci. USA 96, 3706–3711 (1999).

    Article PubMed PubMed Central CAS Google Scholar

  • Ohki, R. et al. Reprimo, a new candidate mediator of the p53-mediated cell cycle arrest at the G2 phase. J. Biol. Chem. 275, 22627–22630 (2000).

    Article PubMed CAS Google Scholar

  • Eischen, C. M. Genome Stability Requires p53. Cold Spring Harb. Perspect. Med. 6, a026096 (2016).

    Article PubMed PubMed Central Google Scholar

  • Oda, E. et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058 (2000).

    Article PubMed CAS Google Scholar

  • Nakano, K. & Vousden, K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell. 7, 683–694 (2001).

    Article PubMed CAS Google Scholar

  • Chen, Y. et al. Structure of p53 binding to the BAX response element reveals DNA unwinding and compression to accommodate base-pair insertion. Nucleic Acids Res 41, 8368–8376 (2013).

    Article PubMed PubMed Central CAS Google Scholar

  • Wei, H. et al. Structural insight into the molecular mechanism of p53-mediated mitochondrial apoptosis. Nat. Commun. 12, 2280 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Leu, J. I. J. et al. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat. Cell Biol. 6, 443–450 (2004).

    Article PubMed CAS Google Scholar

  • Bommer, G. T. et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 17, 1298–1307 (2007).

    Article PubMed CAS Google Scholar

  • Tarasov, V. et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6, 1586–1593 (2007).

    Article PubMed CAS Google Scholar

  • Wu, G. S., Kim, K. & el-Deiry, W. S. KILLER/DR5, a novel DNA-damage inducible death receptor gene, links the p53-tumor suppressor to caspase activation and apoptotic death. Adv. Exp. Med. Biol. 465, 143–151 (2000).

    Article PubMed CAS Google Scholar

  • Maecker, H. L., Koumenis, C. & Giaccia, A. J. p53 promotes selection for Fas-mediated apoptotic resistance. Cancer Res 60, 4638–4644 (2000).

    PubMed CAS Google Scholar

  • Müller, M. et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med 188, 2033–2045 (1998).

    Article PubMed PubMed Central Google Scholar

  • Allen, M. A. et al. Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms. Elife 3, e02200 (2014).

    Article PubMed PubMed Central Google Scholar

  • Cordaux, R. & Batzer, M. A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10, 691–703 (2009).

    Article PubMed PubMed Central CAS Google Scholar

  • Tiwari, B., Jones, A. E. & Abrams, J. M. Transposons, p53 and Genome Security. Trends Genet 34, 846–855 (2018).

    Article PubMed PubMed Central CAS Google Scholar

  • Harris, C. R. et al. p53 responsive elements in human retrotransposons. Oncogene 28, 3857–3865 (2009).

    Article PubMed PubMed Central CAS Google Scholar

  • Haoudi, A., Semmes, O. J., Mason, J. M. & Cannon, R. E. Retrotransposition-Competent Human LINE-1 Induces Apoptosis in Cancer Cells With Intact p53. J. Biomed. Biotechnol. 2004, 185–194 (2004).

    PubMed PubMed Central Google Scholar

  • Zuckerman, V. et al. Tumour suppression by p53: the importance of apoptosis and cellular senescence. J. Pathol. 219, 3–15 (2009).

    Article PubMed CAS Google Scholar

  • Schmitt, C. A. et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335–346 (2002).

    Article PubMed CAS Google Scholar

  • Mijit, M. et al. Role of p53 in the regulation of cellular senescence. Biomolecules 10, 420 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Abuetabh, Y. et al. DNA damage response revisited: the p53 family and its regulators provide endless cancer therapy opportunities. Exp. Mol. Med. 54, 1658–1669 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Capuozzo, M. et al. p53: from fundamental biology to clinical applications in cancer. Biology 11, 1325 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Kortlever, R. M., Higgins, P. J. & Bernards, R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat. Cell Biol. 8, 877–884 (2006).

    Article PubMed PubMed Central CAS Google Scholar

  • Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210 (2000).

    Article PubMed CAS Google Scholar

  • Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    Article PubMed PubMed Central CAS Google Scholar

  • Devic, S. Warburg effect—a consequence or the cause of carcinogenesis? J. Cancer 7, 817–822 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006).

    Article PubMed CAS Google Scholar

  • Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006).

    Article PubMed CAS Google Scholar

  • Zhang, C. et al. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc. Natl. Acad. Sci. USA 108, 16259–16264 (2011).

    Article PubMed PubMed Central CAS Google Scholar

  • Jiang, P. et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 13, 310–316 (2011).

    Article PubMed PubMed Central CAS Google Scholar

  • Li, Q. et al. Rac1 activates non-oxidative pentose phosphate pathway to induce chemoresistance of breast cancer. Nat. Commun. 11, 1456 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Schwartzenberg-Bar-Yoseph, F., Armoni, M. & Karnieli, E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 64, 2627–2633 (2004).

    Article PubMed CAS Google Scholar

  • Boidot, R. et al. Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors. Cancer Res 72, 939–948 (2012).

    Article PubMed CAS Google Scholar

  • Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297–308 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Zawacka-Pankau, J. et al. Inhibition of glycolytic enzymes mediated by pharmacologically activated p53: targeting Warburg effect to fight cancer. J. Biol. Chem. 286, 41600–41615 (2011).

    Article PubMed PubMed Central CAS Google Scholar

  • Zhang, C. et al. Tumour-associated mutant p53 drives the Warburg effect. Nat. Commun. 4, 2935 (2013).

    Article PubMed Google Scholar

  • Basu, S. et al. Mutant p53 controls tumor metabolism and metastasis by regulating PGC-1α. Genes Dev. 32, 230–243 (2018).

    Article PubMed PubMed Central CAS Google Scholar

  • Wang, P.-Y. et al. Increased oxidative metabolism in the Li-Fraumeni syndrome. N. Engl. J. Med. 368, 1027–1032 (2013).

    Article PubMed PubMed Central CAS Google Scholar

  • Snaebjornsson, M. T., Janaki-Raman, S. & Schulze, A. Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metab. 31, 62–76 (2020).

    Article PubMed CAS Google Scholar

  • Moon, S.-H. et al. p53 represses the mevalonate pathway to mediate tumor suppression. Cell 176, 564–580 (2019).

    Article PubMed CAS Google Scholar

  • Zhu, Y. et al. P53 deficiency affects cholesterol esterification to exacerbate hepatocarcinogenesis. Hepatology, (2022).

  • Kruiswijk, F., Labuschagne, C. F. & Vousden, K. H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol. 16, 393–405 (2015).

    Article PubMed CAS Google Scholar

  • Spinelli, J. B. et al. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science 358, 941–946 (2017).

    Article PubMed PubMed Central CAS Google Scholar

  • Zhang, T. et al. Metformin inhibits the urea cycle and reduces putrescine generation in colorectal cancer cell lines. Molecules 26, 1990 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Li, L. et al. p53 regulation of ammonia metabolism through urea cycle controls polyamine biosynthesis. Nature 567, 253–256 (2019).

    Article PubMed CAS Google Scholar

  • Cheung, E. C. & Vousden, K. H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 22, 280–297 (2022).

    Article PubMed CAS Google Scholar

  • Liu, B., Chen, Y. & St Clair, D. K. ROS and p53: a versatile partnership. Free Radic. Biol. Med. 44, 1529–1535 (2008).

    Article PubMed PubMed Central CAS Google Scholar

  • Hussain, S. P. et al. p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res 64, 2350–2356 (2004).

    Article PubMed CAS Google Scholar

  • Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11, 1306–1313 (2005).

    Article PubMed PubMed Central CAS Google Scholar

  • Humpton, T. J. & Vousden, K. H. Regulation of cellular metabolism and hypoxia by p53. Cold Spring Harb. Perspect. Med 6, a026146 (2016).

    Article PubMed PubMed Central Google Scholar

  • Liu, G. & Chen, X. The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis. Oncogene 21, 7195–7204 (2002).

    Article PubMed CAS Google Scholar

  • Kim, J. et al. Wild-Type p53 Promotes cancer metabolic switch by inducing PUMA-dependent suppression of oxidative phosphorylation. Cancer Cell. 35, 191–203 (2019).

    Article PubMed CAS Google Scholar

  • Suzuki, S. et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl. Acad. Sci. USA 107, 7461–7466 (2010).

    Article PubMed PubMed Central CAS Google Scholar

  • Gallo, O. et al. Down-regulation of nitric oxide synthase-2 and cyclooxygenase-2 pathways by p53 in squamous cell carcinoma. Am. J. Pathol. 163, 723–732 (2003).

    Article PubMed PubMed Central CAS Google Scholar

  • Italiano, D., Lena, A. M., Melino, G. & Candi, E. Identification of NCF2/p67phox as a novel p53 target gene. Cell Cycle 11, 4589–4596 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Faraonio, R. et al. p53 suppresses the Nrf2-dependent transcription of antioxidant response genes. J. Biol. Chem. 281, 39776–39784 (2006).

    Article PubMed CAS Google Scholar

  • Reddy, B. A. et al. Nucleotide biosynthetic enzyme GMP synthase is a TRIM21-controlled relay of p53 stabilization. Mol. Cell. 53, 458–470 (2014).

    Article PubMed CAS Google Scholar

  • Stockwell, B. R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Yan, H.-F. et al. Ferroptosis: mechanisms and links with diseases. Signal Transduct. Target Ther. 6, 49 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Wang, S.-J. et al. Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep. 17, 366–373 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Liu, Y. & Gu, W. p53 in ferroptosis regulation: the new weapon for the old guardian. Cell Death Differ. 29, 895–910 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Li, T. et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149, 1269–1283 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Wang, Y. et al. Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep. 20, e47563 (2019).

    Article PubMed PubMed Central Google Scholar

  • Ou, Y. et al. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc. Natl Acad. Sci. USA 113, E6806–E6812 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Chu, B. et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat. Cell Biol. 21, 579–591 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • Liu, J. et al. The regulation of ferroptosis by tumor suppressor p53 and its pathway. Int. J. Mol. Sci. 21, 8387 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Xie, Y. et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 20, 1692–1704 (2017).

    Article PubMed CAS Google Scholar

  • Tarangelo, A. et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 22, 569–575 (2018).

    Article PubMed PubMed Central CAS Google Scholar

  • Venkatesh, D., Stockwell, B. R. & Prives, C. p21 can be a barrier to ferroptosis independent of p53. Aging 12, 17800–17814 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    Article PubMed PubMed Central CAS Google Scholar

  • Menendez, D. et al. p53-responsive TLR8 SNP enhances human innate immune response to respiratory syncytial virus. J. Clin. Invest 129, 4875–4884 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • Guo, G. et al. Local activation of p53 in the tumor microenvironment overcomes immune suppression and enhances antitumor immunity. Cancer Res 77, 2292–2305 (2017).

    Article PubMed PubMed Central CAS Google Scholar

  • Zhou, X. et al. Pharmacologic activation of p53 triggers viral mimicry response thereby abolishing tumor immune evasion and promoting antitumor immunity. Cancer Disco. 11, 3090–3105 (2021).

    Article CAS Google Scholar

  • Wang, B., Niu, D., Lai, L. & Ren, E. C. p53 increases MHC class I expression by upregulating the endoplasmic reticulum aminopeptidase ERAP1. Nat. Commun. 4, 2359 (2013).

    Article PubMed Google Scholar

  • Xiao, Y. et al. Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy. Nat. Commun. 13, 758 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Dong, Z.-Y. et al. Potential predictive value of and mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin. Cancer Res 23, 3012–3024 (2017).

    Article PubMed CAS Google Scholar

  • Ubertini, V. et al. Mutant p53 gains new function in promoting inflammatory signals by repression of the secreted interleukin-1 receptor antagonist. Oncogene 34, 2493–2504 (2015).

    Article PubMed CAS Google Scholar

  • Cooks, T. et al. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat. Commun. 9, 771 (2018).

    Article PubMed PubMed Central Google Scholar

  • Cooks, T. et al. Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell 23, 634–646 (2013).

    Article PubMed PubMed Central CAS Google Scholar

  • Di Minin, G. et al. Mutant p53 reprograms TNF signaling in cancer cells through interaction with the tumor suppressor DAB2IP. Mol. Cell 56, 617–629 (2014).

    Article PubMed Google Scholar

  • Song, H. et al. Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis. Proc. Natl Acad. Sci. USA 109, 17531–17536 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Ouadah, Y. et al. Rare pulmonary neuroendocrine cells are stem cells regulated by Rb, p53, and Notch. Cell 179, 403–416 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • George, J. et al. Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47–53 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  • Cicalese, A. et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138, 1083–1095 (2009).

    Article PubMed CAS Google Scholar

  • Zhou, Z., Flesken-Nikitin, A. & Nikitin, A. Y. Prostate cancer associated with p53 and Rb deficiency arises from the stem/progenitor cell-enriched proximal region of prostatic ducts. Cancer Res. 67, 5683–5690 (2007).

    Article PubMed CAS Google Scholar

  • Flores, I. & Blasco, M. A. A p53-dependent response limits epidermal stem cell functionality and organismal size in mice with short telomeres. PLoS One 4, e4934 (2009).

    Article PubMed PubMed Central Google Scholar

  • Zheng, H. et al. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455, 1129–1133 (2008).

    Article PubMed PubMed Central CAS Google Scholar

  • Liu, Y. et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4, 37–48 (2009).

    Article PubMed PubMed Central CAS Google Scholar

  • Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000).

    Article PubMed CAS Google Scholar

  • van Os, R. et al. A Limited role for p21Cip1/Waf1 in maintaining normal hematopoietic stem cell functioning. Stem Cells 25, 836–843 (2007).

    Article PubMed Google Scholar

  • Shetzer, Y., Molchadsky, A., & Rotter, V. Oncogenic mutant p53 gain of function nourishes the vicious cycle of tumor development and cancer stem-cell formation. Cold Spring Harb. Perspect. Med. 6, a026203 (2016).

    Article PubMed PubMed Central Google Scholar

  • Escoll, M. et al. Mutant p53 oncogenic functions in cancer stem cells are regulated by WIP through YAP/TAZ. Oncogene 36, 3515–3527 (2017).

    Article PubMed CAS Google Scholar

  • Loizou, E. et al. A gain-of-function p53-Mutant oncogene promotes cell fate plasticity and myeloid leukemia through the pluripotency factor FOXH1. Cancer Disco. 9, 962–979 (2019).

    Article CAS Google Scholar

  • Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2019).

    Article PubMed CAS Google Scholar

  • Wang, S.-P. et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat. Cell Biol. 11, 694–704 (2009).

    Article PubMed CAS Google Scholar

  • Kim, N. H. et al. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J. Cell Biol. 195, 417–433 (2011).

    Article PubMed PubMed Central CAS Google Scholar

  • Dong, P. et al. Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene 32, 3286–3295 (2013).

    Article PubMed CAS Google Scholar

  • Chang, C.-J. et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat. Cell Biol. 13, 317–323 (2011).

    Article PubMed PubMed Central CAS Google Scholar

  • Wang, J. et al. Autophagy augments the self-renewal of lung cancer stem cells by the degradation of ubiquitinated p53. Cell Death Dis. 12, 98 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Klionsky, D. J. et al. Autophagy in major human diseases. EMBO J. 40, e108863 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Abida, W. M. & Gu, W. p53-Dependent and p53-independent activation of autophagy by ARF. Cancer Res. 68, 352–357 (2008).

    Article PubMed PubMed Central CAS Google Scholar

  • Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006).

    Article PubMed CAS Google Scholar

  • Mrschtik, M. & Ryan, K. M. Another DRAM involved in autophagy and cell death. Autophagy 12, 603–605 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Levine, B. & Kroemer, G. Biological functions of autophagy genes: a disease perspective. Cell 176, 11–42 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • Kenzelmann Broz, D. et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 27, 1016–1031 (2013).

    Article PubMed PubMed Central Google Scholar

  • Zheng, W. et al. Inhibition of Cathepsin D (CTSD) enhances radiosensitivity of glioblastoma cells by attenuating autophagy. Mol. Carcinog. 59, 651–660 (2020).

    Article PubMed CAS Google Scholar

  • Liu, Y.-J. et al. The noncanonical role of the protease cathepsin D as a cofilin phosphatase. Cell Res. 31, 801–813 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Wu, G. S., Saftig, P., Peters, C. & El-Deiry, W. S. Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity. Oncogene 16, 2177–2183 (1998).

    Article PubMed CAS Google Scholar

  • Ikeguchi, M. et al. Correlation between cathepsin D expression and p53 protein nuclear accumulation in oesophageal squamous cell carcinoma. J. Clin. Pathol. 55, 121–126 (2002).

    Article PubMed PubMed Central CAS Google Scholar

  • Yeo, S. Y. et al. Transglutaminase 2 contributes to a TP53-induced autophagy program to prevent oncogenic transformation. Elife 5, e07101 (2016).

    Article PubMed PubMed Central Google Scholar

  • Kim, J., Kundu, M., Viollet, B. & Guan, K.-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    Article PubMed PubMed Central CAS Google Scholar

  • Budanov, A. V. & Karin, M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134, 451–460 (2008).

    Article PubMed PubMed Central CAS Google Scholar

  • Kon, N. et al. mTOR inhibition acts as an unexpected checkpoint in p53-mediated tumor suppression. Genes Dev. 35, 59–64 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Chang, H. W. et al. p53/BNIP3-dependent mitophagy limits glycolytic shift in radioresistant cancer. Oncogene 38, 3729–3742 (2019).

    Article PubMed CAS Google Scholar

  • Fernández, Á. F. et al. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 558, 136–140 (2018).

    Article PubMed PubMed Central Google Scholar

  • Lee, E. F. et al. Structural insights into BCL2 pro-survival protein interactions with the key autophagy regulator BECN1 following phosphorylation by STK4/MST1. Autophagy 15, 785–795 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • Feng, W., Huang, S., Wu, H. & Zhang, M. Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J. Mol. Biol. 372, 223–235 (2007).

    Article PubMed CAS Google Scholar

  • Zheng, R. et al. The status of p53 in cancer cells affects the role of autophagy in tumor radiosensitisation. J. BUON 19, 336–341 (2014).

    PubMed Google Scholar

  • Maiuri, M. C. et al. Autophagy regulation by p53. Curr. Opin. Cell Biol. 22, 181–185 (2010).

    Article PubMed CAS Google Scholar

  • Livesey, K. M. et al. p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res. 72, 1996–2005 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Livesey, K. M. et al. Direct molecular interactions between HMGB1 and TP53 in colorectal cancer. Autophagy 8, 846–848 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Yang, Y. et al. Autophagy promotes mammalian survival by suppressing oxidative stress and p53. Genes Dev. 34, 688–p700 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Agupitan, A. D. et al. P53: a guardian of immunity becomes its saboteur through mutation. Int. J. Mol. Sci. 21, 3452 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Levine, A. P53 and the immune response: 40 years of exploration-a plan for the future. Int. J. Mol. Sci. 21, 541 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Min, E.-Y. et al. The effects of fucodian on senescence are controlled by the p16INK4a-pRb and p14Arf-p53 pathways in hepatocellular carcinoma and hepatic cell lines. Int. J. Oncol. 45, 47–56 (2014).

    Article PubMed PubMed Central CAS Google Scholar

  • Winkler, L. et al. Functional elements of the cis-regulatory lincRNA-p21. Cell Rep. 39, 110687 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Giacomelli, A. O. et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat. Genet. 50, 1381–1387 (2018).

    Article PubMed PubMed Central CAS Google Scholar

  • Wellenstein, M. D. et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature 572, 538–542 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • Yang, Y. et al. Targeting the miR-34a/LRPPRC/MDR1 axis collapse the chemoresistance in P53 inactive colorectal cancer. Cell Death Differ. 29, 2177–2189 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Makino, Y. et al. Constitutive activation of the tumor suppressor p53 in hepatocytes paradoxically promotes non-cell autonomous liver carcinogenesis. Cancer Res 82, 2860–2873 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Hamarsheh, S. A., Groß, O., Brummer, T. & Zeiser, R. Immune modulatory effects of oncogenic KRAS in cancer. Nat. Commun. 11, 5439 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    Article PubMed PubMed Central CAS Google Scholar

  • de Andrade, K. C. et al. Cancer incidence, patterns, and genotype-phenotype associations in individuals with pathogenic or likely pathogenic germline TP53 variants: an observational cohort study. Lancet Oncol. 22, 1787–1798 (2021).

    Article PubMed PubMed Central Google Scholar

  • Freed-Pastor, W. A. & Prives, C. Mutant p53: one name, many proteins. Genes Dev. 26, 1268–1286 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Joerger, A. C. & Fersht, A. R. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu. Rev. Biochem. 85, 375–404 (2016).

    Article PubMed CAS Google Scholar

  • Duffy, M. J., Synnott, N. C., O’Grady, S. & Crown, J. Targeting p53 for the treatment of cancer. Semin. Cancer Biol. 79, 58–67 (2022).

    Article PubMed CAS Google Scholar

  • Baugh, E. H. et al. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 25, 154–160 (2018).

    Article PubMed CAS Google Scholar

  • Bullock, A. N., Henckel, J. & Fersht, A. R. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene 19, 1245–1256 (2000).

    Article PubMed CAS Google Scholar

  • Mantovani, F., Collavin, L. & Del Sal, G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 26, 199–212 (2019).

    Article PubMed Google Scholar

  • Yue, X. et al. Mutant p53 in cancer: accumulation, gain-of-function, and therapy. J. Mol. Biol. 429, 1595–1606 (2017).

    Article PubMed PubMed Central CAS Google Scholar

  • Hainaut, P. & Pfeifer, G. P. Somatic TP53 mutations in the era of genome sequencing. Cold Spring Harb. Perspect. Med. 6, a026179 (2016).

    Article PubMed PubMed Central Google Scholar

  • Petitjean, A. et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat. 28, 622–629 (2007).

    Article PubMed CAS Google Scholar

  • Petitjean, A. et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26, 2157–2165 (2007).

    Article PubMed CAS Google Scholar

  • Olivier, M. et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 19, 607–614 (2002).

    Article PubMed CAS Google Scholar

  • Pan, J.-W. et al. The molecular landscape of Asian breast cancers reveals clinically relevant population-specific differences. Nat. Commun. 11, 6433 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Matozaki, T. et al. p53 gene mutations in human gastric cancer: wild-type p53 but not mutant p53 suppresses growth of human gastric cancer cells. Cancer Res 52, 4335–4341 (1992).

    PubMed CAS Google Scholar

  • Isaacs, W. B., Carter, B. S. & Ewing, C. M. Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles. Cancer Res 51, 4716–4720 (1991).

    PubMed CAS Google Scholar

  • Menon, A. G. et al. Chromosome 17p deletions and p53 gene mutations associated with the formation of malignant neurofibrosarcomas in von Recklinghausen neurofibromatosis. Proc. Natl. Acad. Sci. USA 87, 5435–5439 (1990).

    Article PubMed PubMed Central CAS Google Scholar

  • Maxwell, K. N. et al. Inherited TP53 variants and risk of prostate cancer. Eur. Urol. 81, 243–250 (2022).

    Article PubMed CAS Google Scholar

  • Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    Article PubMed CAS Google Scholar

  • McBride, K. et al. Li-Fraumeni syndrome: cancer risk assessment and clinical management. Nat. Rev. Clin. Oncol. 11, 260–271 (2014).

    Article PubMed CAS Google Scholar

  • Baker, S. J. et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244, 217–221 (1989).

    Article PubMed CAS Google Scholar

  • Kashkin, K. N., Fleĭshman, E. V., Chumakov, P. M. & Perevoshchikov, A. G. Genetic alterations in the region of the p53 gene on human chromosome 17 in colorectal cancer. Genetika 34, 1049–1055 (1998).

    PubMed CAS Google Scholar

  • Cooper, M. J. et al. p53 mutations in bladder carcinoma cell lines. Oncol. Res. 6, 569–579 (1994).

    PubMed CAS Google Scholar

  • Goh, A. M., Coffill, C. R. & Lane, D. P. The role of mutant p53 in human cancer. J. Pathol. 223, 116–126 (2011).

    Article PubMed CAS Google Scholar

  • Dittmer, D. et al. Gain of function mutations in p53. Nat. Genet. 4, 42–46 (1993).

    Article PubMed CAS Google Scholar

  • Ghosh, M. et al. Mutant p53 suppresses innate immune signaling to promote tumorigenesis. Cancer Cell. 39, 494–508 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Sethi, N. S. et al. Early TP53 alterations engage environmental exposures to promote gastric premalignancy in an integrative mouse model. Nat. Genet. 52, 219–230 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Donehower, L. A. et al. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep. 28, 3010 (2019).

    Article PubMed CAS Google Scholar

  • Hanel, W. & Moll, U. M. Links between mutant p53 and genomic instability. J. Cell. Biochem. 113, 433–439 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article PubMed CAS Google Scholar

  • Livingstone, L. R. et al. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70, 923–935 (1992).

    Article PubMed CAS Google Scholar

  • Negrini, S., Gorgoulis, V. G. & Halazonetis, T. D. Genomic instability-an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 11, 220–228 (2010).

    Article PubMed CAS Google Scholar

  • Tomasini, R., Mak, T. W. & Melino, G. The impact of p53 and p73 on aneuploidy and cancer. Trends Cell Biol. 18, 244–252 (2008).

    Article PubMed CAS Google Scholar

  • Baslan, T. et al. Ordered and deterministic cancer genome evolution after p53 loss. Nature 608, 795–802 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Chan-Seng-Yue, M. et al. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat. Genet. 52, 231–240 (2020).

    Article PubMed CAS Google Scholar

  • Mueller, S. et al. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature 554, 62–68 (2018).

    Article PubMed PubMed Central CAS Google Scholar

  • Maddipati, R. et al. Levels regulate metastatic heterogeneity in pancreatic adenocarcinoma. Cancer Disco. 12, 542–561 (2022).

    Article CAS Google Scholar

  • Boettcher, S. et al. A dominant-negative effect drives selection of missense mutations in myeloid malignancies. Science 365, 599–604 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • Zhu, J. et al. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature 525, 206–211 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  • Xiong, S. et al. Differential gain-of-function activity of three p53 hotspot mutants in vivo. Cancer Res 82, 1926–1936 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Song, H., Hollstein, M. & Xu, Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat. Cell Biol. 9, 573–580 (2007).

    Article PubMed CAS Google Scholar

  • Restle, A. et al. Dissecting the role of p53 phosphorylation in hom*ologous recombination provides new clues for gain-of-function mutants. Nucleic Acids Res 36, 5362–5375 (2008).

    Article PubMed PubMed Central CAS Google Scholar

  • Dong, P. et al. Elevated expression of p53 gain-of-function mutation R175H in endometrial cancer cells can increase the invasive phenotypes by activation of the EGFR/PI3K/AKT pathway. Mol. Cancer 8, 103 (2009).

    Article PubMed PubMed Central Google Scholar

  • Powell, E., Piwnica-Worms, D. & Piwnica-Worms, H. Contribution of p53 to metastasis. Cancer Disco. 4, 405–414 (2014).

    Article CAS Google Scholar

  • Brosh, R. & Rotter, V. When mutants gain new powers: news from the mutant p53 field. Nat. Rev. Cancer 9, 701–713 (2009).

    Article PubMed CAS Google Scholar

  • Oren, M. & Kotler, E. p53 mutations promote proteasomal activity. Nat. Cell Biol. 18, 833–835 (2016).

    Article PubMed CAS Google Scholar

  • van Oijen, M. & Slootweg, P. Gain-of-function mutations in the tumor suppressor gene p53. Clin. Cancer Res. 6, 2138–2145 (2000).

    PubMed Google Scholar

  • Halevy, O., Michalovitz, D. & Oren, M. Different tumor-derived p53 mutants exhibit distinct biological activities. Science 250, 113–116 (1990).

    Article PubMed CAS Google Scholar

  • Redman-Rivera, L. N. et al. Acquisition of aneuploidy drives mutant p53-associated gain-of-function phenotypes. Nat. Commun. 12, 5184 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Jiang, Z. et al. Immunogenomics analysis reveals that TP53 mutations inhibit tumor immunity in gastric cancer. Transl. Oncol. 11, 1171–1187 (2018).

    Article PubMed PubMed Central Google Scholar

  • Lyu, H. et al. Correlate the mutation and the mutation with immune signatures in head and neck squamous cell cancer. Comput Struct. Biotechnol. J. 17, 1020–1030 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • Eastham, J. A. et al. Association of p53 mutations with metastatic prostate cancer. Clin. Cancer Res. 1, 1111–1118 (1995).

    PubMed CAS Google Scholar

  • Lang, G. A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119, 861–872 (2004).

    Article PubMed CAS Google Scholar

  • Olive, K. P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119, 847–860 (2004).

    Article PubMed CAS Google Scholar

  • Kim, M. P. et al. Oncogenic recruits an expansive transcriptional network through mutant p53 to drive pancreatic cancer metastasis. Cancer Disco. 11, 2094–2111 (2021).

    Article CAS Google Scholar

  • Zheng, S. et al. A genetic mouse model for metastatic lung cancer with gender differences in survival. Oncogene 26, 6896–6904 (2007).

    Article PubMed CAS Google Scholar

  • Robey, R. W. et al. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 18, 452–464 (2018).

    Article PubMed PubMed Central CAS Google Scholar

  • Chan, K.-T. & Lung, M. L. Mutant p53 expression enhances drug resistance in a hepatocellular carcinoma cell line. Cancer Chemother. Pharmacol. 53, 519–526 (2004).

    Article PubMed CAS Google Scholar

  • Alam, S. K. et al. DNA damage-induced ephrin-B2 reverse signaling promotes chemoresistance and drives EMT in colorectal carcinoma harboring mutant p53. Cell Death Differ. 23, 707–722 (2016).

    Article PubMed CAS Google Scholar

  • Wong, R. P. C. et al. p53-R273H gains new function in induction of drug resistance through down-regulation of procaspase-3. Mol. Cancer Ther. 6, 1054–1061 (2007).

    Article PubMed CAS Google Scholar

  • Masciarelli, S. et al. Gain-of-function mutant p53 downregulates miR-223 contributing to chemoresistance of cultured tumor cells. Oncogene 33, 1601–1608 (2014).

    Article PubMed CAS Google Scholar

  • Joerger, A. C. & Fersht, A. R. Structural biology of the tumor suppressor p53. Annu. Rev. Biochem. 77, 557–582 (2008).

    Article PubMed CAS Google Scholar

  • Chillemi, G. et al. Structural evolution and dynamics of the p53 proteins. Cold Spring Harb. Perspect. Med. 7, a028308 (2017).

    Article PubMed PubMed Central Google Scholar

  • Joerger, A. C. & Fersht, A. R. The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb. Perspect. Biol. 2, a000919 (2010).

    Article PubMed PubMed Central Google Scholar

  • Bell, S. et al. p53 contains large unstructured regions in its native state. J. Mol. Biol. 322, 917–927 (2002).

    Article PubMed CAS Google Scholar

  • Krois, A. S., Dyson, H. J. & Wright, P. E. Long-range regulation of p53 DNA binding by its intrinsically disordered N-terminal transactivation domain. Proc. Natl. Acad. Sci. USA 115, E11302–E11310 (2018).

    Article PubMed PubMed Central CAS Google Scholar

  • Walker, K. K. & Levine, A. J. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl Acad. Sci. USA 93, 15335–15340 (1996).

    Article PubMed PubMed Central CAS Google Scholar

  • Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).

    Article PubMed CAS Google Scholar

  • Popowicz, G. M. et al. Molecular basis for the inhibition of p53 by Mdmx. Cell Cycle 6, 2386–2392 (2007).

    Article PubMed CAS Google Scholar

  • Lee, C. W., Martinez-Yamout, M. A., Dyson, H. J. & Wright, P. E. Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry 49, 9964–9971 (2010).

    Article PubMed CAS Google Scholar

  • Krois, A. S. et al. Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein. Proc. Natl Acad. Sci. USA 113, E1853–E1862 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Feng, H. et al. Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure 17, 202–210 (2009).

    Article PubMed PubMed Central CAS Google Scholar

  • Miller Jenkins, L. M. et al. Characterization of the p300 Taz2-p53 TAD2 complex and comparison with the p300 Taz2-p53 TAD1 complex. Biochemistry 54, 2001–2010 (2015).

    Article PubMed CAS Google Scholar

  • Bochkareva, E. et al. Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc. Natl. Acad. Sci. USA 102, 15412–15417 (2005).

    Article PubMed PubMed Central CAS Google Scholar

  • Rowell, J. P. et al. HMGB1-facilitated p53 DNA binding occurs via HMG-Box/p53 transactivation domain interaction, regulated by the acidic tail. Structure 20, 2014–2024 (2012).

    Article PubMed CAS Google Scholar

  • Di Lello, P. et al. Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol. Cell. 22, 731–740 (2006).

    Article PubMed Google Scholar

  • Ecsédi, P. et al. Structure determination of the transactivation domain of p53 in complex with S100A4 using Annexin A2 as a crystallization chaperone. Structure 28, 943–953 (2020).

    Article PubMed Google Scholar

  • Okuda, M. & Nishimura, Y. Extended string binding mode of the phosphorylated transactivation domain of tumor suppressor p53. J. Am. Chem. Soc. 136, 14143–14152 (2014).

    Article PubMed CAS Google Scholar

  • Lee, C. W. et al. Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. Proc. Natl Acad. Sci. USA 107, 19290–19295 (2010).

    Article PubMed PubMed Central CAS Google Scholar

  • Raj, N. & Attardi, L. D. The transactivation domains of the p53 protein. Cold Spring Harb. Perspect. Med 7, a026047 (2017).

    Article PubMed PubMed Central Google Scholar

  • Dumont, P. et al. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat. Genet. 33, 357–365 (2003).

    Article PubMed CAS Google Scholar

  • Ruaro, E. M. et al. A proline-rich motif in p53 is required for transactivation-independent growth arrest as induced by Gas1. Proc. Natl. Acad. Sci. USA 94, 4675–4680 (1997).

    Article PubMed PubMed Central CAS Google Scholar

  • Jiang, M. et al. p53 binds the nuclear matrix in normal cells: binding involves the proline-rich domain of p53 and increases following genotoxic stress. Oncogene 20, 5449–5458 (2001).

    Article PubMed CAS Google Scholar

  • Golubovskaya, V. M. et al. The 7-amino-acid site in the proline-rich region of the N-terminal domain of p53 is involved in the interaction with FAK and is critical for p53 functioning. Biochem. J. 411, 151–160 (2008).

    Article PubMed CAS Google Scholar

  • Yang, L., Li, Y., Bhattacharya, A. & Zhang, Y. PEPD is a pivotal regulator of p53 tumor suppressor. Nat. Commun. 8, 2052 (2017).

    Article PubMed PubMed Central Google Scholar

  • Bergamaschi, D. et al. iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nat. Genet. 38, 1133–1141 (2006).

    Article PubMed CAS Google Scholar

  • Zilfou, J. T. et al. The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Mol. Cell. Biol. 21, 3974–3985 (2001).

    Article PubMed PubMed Central CAS Google Scholar

  • Cho, Y., Gorina, S., Jeffrey, P. D. & Pavletich, N. P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).

    Article PubMed CAS Google Scholar

  • Iwafuchi-Doi, M. & Zaret, K. S. Pioneer transcription factors in cell reprogramming. Genes Dev. 28, 2679–2692 (2014).

    Article PubMed PubMed Central Google Scholar

  • Clarke, C. L. & Graham, J. D. Non-overlapping progesterone receptor cistromes contribute to cell-specific transcriptional outcomes. PLoS One 7, e35859 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Nishimura, M., Takizawa, Y., Nozawa, K. & Kurumizaka, H. Structural basis for p53 binding to its nucleosomal target DNA sequence. PNAS Nexus 1, pgac177 (2022).

    Article PubMed PubMed Central Google Scholar

  • el-Deiry, W. S. et al. Definition of a consensus binding site for p53. Nat. Genet. 1, 45–49 (1992).

    Article PubMed CAS Google Scholar

  • Funk, W. D. et al. A transcriptionally active DNA-binding site for human p53 protein complexes. Mol. Cell. Biol. 12, 2866–2871 (1992).

    PubMed PubMed Central CAS Google Scholar

  • Friedman, P. N., Chen, X., Bargonetti, J. & Prives, C. The p53 protein is an unusually shaped tetramer that binds directly to DNA. Proc. Natl. Acad. Sci. USA 90, 3319–3323 (1993).

    Article PubMed PubMed Central CAS Google Scholar

  • Riley, T., Sontag, E., Chen, P. & Levine, A. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol. 9, 402–412 (2008).

    Article PubMed CAS Google Scholar

  • Brázda, V. & Coufal, J. Recognition of local DNA structures by p53 protein. Int. J. Mol. Sci. 18, 375 (2017).

    Article PubMed PubMed Central Google Scholar

  • Brázda, V. & Fojta, M. The rich world of p53 DNA binding targets: the role of DNA structure. Int. J. Mol. Sci. 20, 5605 (2019).

    Article PubMed PubMed Central Google Scholar

  • Klein, C. et al. NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA. J. Biol. Chem. 276, 49020–49027 (2001).

    Article PubMed CAS Google Scholar

  • Rippin, T. M., Freund, S. M. V., Veprintsev, D. B. & Fersht, A. R. Recognition of DNA by p53 core domain and location of intermolecular contacts of cooperative binding. J. Mol. Biol. 319, 351–358 (2002).

    Article PubMed CAS Google Scholar

  • Ho, W. C., Fitzgerald, M. X. & Marmorstein, R. Structure of the p53 core domain dimer bound to DNA. J. Biol. Chem. 281, 20494–20502 (2006).

    Article PubMed CAS Google Scholar

  • Chen, Y., Dey, R. & Chen, L. Crystal structure of the p53 core domain bound to a full consensus site as a self-assembled tetramer. Structure 18, 246–256 (2010).

    Article PubMed PubMed Central CAS Google Scholar

  • Kitayner, M. et al. Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs. Nat. Struct. Mol. Biol. 17, 423–429 (2010).

    Article PubMed PubMed Central CAS Google Scholar

  • Golovenko, D. et al. New insights into the role of DNA shape on its recognition by p53 proteins. Structure 26, 1237–1250 (2018).

    Article PubMed CAS Google Scholar

  • Petty, T. J. et al. An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity. EMBO J. 30, 2167–2176 (2011).

    Article PubMed PubMed Central CAS Google Scholar

  • Vainer, R. et al. Structural basis for p53 Lys120-acetylation-dependent DNA-binding mode. J. Mol. Biol. 428, 3013–3025 (2016).

    Article PubMed CAS Google Scholar

  • Iwabuchi, K. et al. Two cellular proteins that bind to wild-type but not mutant p53. Proc. Natl. Acad. Sci. USA 91, 6098–6102 (1994).

    Article PubMed PubMed Central CAS Google Scholar

  • Baldock, R. A. et al. ATM localization and heterochromatin repair depend on direct interaction of the 53BP1-BRCT2 domain with γH2AX. Cell Rep. 13, 2081–2089 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  • Gorina, S. & Pavletich, N. P. Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274, 1001–1005 (1996).

    Article PubMed CAS Google Scholar

  • Derbyshire, D. J. et al. Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO J. 21, 3863–3872 (2002).

    Article PubMed PubMed Central CAS Google Scholar

  • Samuels-Lev, Y. et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell. 8, 781–794 (2001).

    Article PubMed CAS Google Scholar

  • Chen, S. et al. iASPP mediates p53 selectivity through a modular mechanism fine-tuning DNA recognition. Proc. Natl. Acad. Sci. USA 116, 17470–17479 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • Follis, A. V. et al. The DNA-binding domain mediates both nuclear and cytosolic functions of p53. Nat. Struct. Mol. Biol. 21, 535–p543 (2014).

    Article PubMed PubMed Central CAS Google Scholar

  • Lilyestrom, W. et al. Crystal structure of SV40 large T-antigen bound to p53: interplay between a viral oncoprotein and a cellular tumor suppressor. Genes Dev. 20, 2373–2382 (2006).

    Article PubMed PubMed Central CAS Google Scholar

  • Martinez-Zapien, D. et al. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature 529, 541–545 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Scheffner, M. et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    Article PubMed CAS Google Scholar

  • Jeffrey, P. D., Gorina, S. & Pavletich, N. P. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267, 1498–1502 (1995).

    Article PubMed CAS Google Scholar

  • Lee, W. et al. Solution structure of the tetrameric minimum transforming domain of p53. Nat. Struct. Biol. 1, 877–890 (1994).

    Article PubMed CAS Google Scholar

  • Clore, G. M. et al. Interhelical angles in the solution structure of the oligomerization domain of p53: correction. Science 267, 1515–1516 (1995).

    Article PubMed CAS Google Scholar

  • Kamada, R. et al. Tetramer formation of tumor suppressor protein p53: Structure, function, and applications. Biopolymers 106, 598–612 (2016).

    Article PubMed CAS Google Scholar

  • Higashimoto, Y. et al. Unfolding, aggregation, and amyloid formation by the tetramerization domain from mutant p53 associated with lung cancer. Biochemistry 45, 1608–1619 (2006).

    Article PubMed CAS Google Scholar

  • Stommel, J. M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18, 1660–1672 (1999).

    Article PubMed PubMed Central CAS Google Scholar

  • Chène, P. The role of tetramerization in p53 function. Oncogene 20, 2611–2617 (2001).

    Article PubMed Google Scholar

  • Laptenko, O., Tong, D. R., Manfredi, J. & Prives, C. The tail that wags the dog: how the disordered c-terminal domain controls the transcriptional activities of the p53 tumor-suppressor protein. Trends Biochem. Sci. 41, 1022–1034 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Tong, Q. et al. Structural plasticity of methyllysine recognition by the tandem tudor domain of 53BP1. Structure 23, 312–321 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  • Liou, S.-H. et al. Structure of the p53/RNA polymerase II assembly. Commun. Biol. 4, 397 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Veprintsev, D. B. et al. Core domain interactions in full-length p53 in solution. Proc. Natl. Acad. Sci. USA 103, 2115–2119 (2006).

    Article PubMed PubMed Central CAS Google Scholar

  • Tidow, H. et al. Quaternary structures of tumor suppressor p53 and a specific p53 DNA complex. Proc. Natl. Acad. Sci. USA 104, 12324–12329 (2007).

    Article PubMed PubMed Central CAS Google Scholar

  • Arlt, C., Ihling, C. H. & Sinz, A. Structure of full-length p53 tumor suppressor probed by chemical cross-linking and mass spectrometry. Proteomics 15, 2746–2755 (2015).

    Article PubMed CAS Google Scholar

  • Thornton, J. M., Laskowski, R. A. & Borkakoti, N. AlphaFold heralds a data-driven revolution in biology and medicine. Nat. Med. 27, 1666–1669 (2021).

    Article PubMed CAS Google Scholar

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Callaway, E. What’s next for AlphaFold and the AI protein-folding revolution. Nature 604, 234–238 (2022).

    Article PubMed CAS Google Scholar

  • Buel, G. R. & Walters, K. J. Can AlphaFold2 predict the impact of missense mutations on structure? Nat. Struct. Mol. Biol. 29, 1–2 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Mullard, A. What does AlphaFold mean for drug discovery? Nat. Rev. Drug. Discov. 20, 725–727 (2021).

    Article PubMed CAS Google Scholar

  • Humphreys, I. R. et al. Computed structures of core eukaryotic protein complexes. Science 374, eabm4805 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Binder, J. L. et al. AlphaFold illuminates half of the dark human proteins. Curr. Opin. Struct. Biol. 74, 102372 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Manfredi, J. J. Mdm2 and MdmX: partners in p53 destruction. Cancer Res 81, 1633–1634 (2021).

    Article PubMed CAS Google Scholar

  • Freedman, D. A., Wu, L. & Levine, A. J. Functions of the MDM2 oncoprotein. Cell. Mol. Life Sci. 55, 96–107 (1999).

    Article PubMed PubMed Central CAS Google Scholar

  • Deng, L. et al. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct. Target Ther. 5, 11 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Linke, K. et al. Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ. 15, 841–848 (2008).

    Article PubMed CAS Google Scholar

  • Iyappan, S. et al. Turning the RING domain protein MdmX into an active ubiquitin-protein ligase. J. Biol. Chem. 285, 33065–33072 (2010).

    Article PubMed PubMed Central CAS Google Scholar

  • Wade, M., Wang, Y. V. & Wahl, G. M. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol. 20, 299–309 (2010).

    Article PubMed PubMed Central CAS Google Scholar

  • Bhattacharya, S., Chakraborty, D., Basu, M. & Ghosh, M. K. Emerging insights into HAUSP (USP7) in physiology, cancer and other diseases. Signal Transduct. Target Ther. 3, 17 (2018).

    Article PubMed PubMed Central Google Scholar

  • Vu, B. et al. Discovery of RG7112: a small-molecule MDM2 inhibitor in clinical development. ACS Med. Chem. Lett. 4, 466–469 (2013).

    Article PubMed PubMed Central CAS Google Scholar

  • Sun, D. et al. Discovery of AMG 232, a potent, selective, and orally bioavailable MDM2-p53 inhibitor in clinical development. J. Med. Chem. 57, 1454–1472 (2014).

    Article PubMed CAS Google Scholar

  • Tovar, C. et al. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res 73, 2587–2597 (2013).

    Article PubMed CAS Google Scholar

  • Ding, Q. et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J. Med. Chem. 56, 5979–5983 (2013).

    Article PubMed CAS Google Scholar

  • Khurana, A. & Shafer, D. A. MDM2 antagonists as a novel treatment option for acute myeloid leukemia: perspectives on the therapeutic potential of idasanutlin (RG7388). Onco Targets Ther. 12, 2903–2910 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • Fan, X. et al. MDM2 inhibitor RG7388 potently inhibits tumors by activating p53 pathway in nasopharyngeal carcinoma. Cancer Biol. Ther. 20, 1328–1336 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • Cui, Y., Zhou, J. & Rong, F. Combination of metformin and RG7388 enhances inhibition of growth and induction of apoptosis of ovarian cancer cells through the PI3K/AKT/mTOR pathway. Biochem. Biophys. Res. Commun. 533, 665–671 (2020).

    Article PubMed CAS Google Scholar

  • Berberich, A. et al. Targeting Resistance against the MDM2 Inhibitor RG7388 in Glioblastoma Cells by the MEK Inhibitor Trametinib. Clin. Cancer Res 25, 253–265 (2019).

    Article PubMed CAS Google Scholar

  • Skalniak, L. et al. Prolonged idasanutlin (RG7388) treatment leads to the generation of p53-mutated cells. Cancers (Basel) 10, 396 (2018).

    Article PubMed PubMed Central CAS Google Scholar

  • Rew, Y. & Sun, D. Discovery of a small molecule MDM2 inhibitor (AMG 232) for treating cancer. J. Med. Chem. 57, 6332–6341 (2014).

    Article PubMed CAS Google Scholar

  • Her, N.-G. et al. Potent effect of the MDM2 inhibitor AMG232 on suppression of glioblastoma stem cells. Cell Death Dis. 9, 792 (2018).

    Article PubMed PubMed Central Google Scholar

  • Sahin, I. et al. AMG-232 sensitizes high MDM2-expressing tumor cells to T-cell-mediated killing. Cell Death Disco. 6, 57 (2020).

    Article CAS Google Scholar

  • Erba, H. P. et al. Phase 1b study of the MDM2 inhibitor AMG 232 with or without trametinib in relapsed/refractory acute myeloid leukemia. Blood Adv. 3, 1939–1949 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • Wang, S. et al. SAR405838: an optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. Cancer Res 74, 5855–5865 (2014).

    Article PubMed PubMed Central CAS Google Scholar

  • de Jonge, M. et al. A phase I study of SAR405838, a novel human double minute 2 (HDM2) antagonist, in patients with solid tumours. Eur. J. Cancer 76, 144–151 (2017).

    Article PubMed Google Scholar

  • de Weger, V. A. et al. A phase I study of the HDM2 antagonist SAR405838 combined with the MEK inhibitor pimasertib in patients with advanced solid tumours. Br. J. Cancer 120, 286–293 (2019).

    Article PubMed Google Scholar

  • Jung, J. et al. TP53 mutations emerge with HDM2 inhibitor SAR405838 treatment in de-differentiated liposarcoma. Nat. Commun. 7, 12609 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Holzer, P. et al. Discovery of a dihydroisoquinolinone derivative (NVP-CGM097): a highly potent and selective MDM2 inhibitor undergoing phase 1 clinical trials in p53wt tumors. J. Med. Chem. 58, 6348–6358 (2015).

    Article PubMed CAS Google Scholar

  • Weisberg, E. et al. Inhibition of wild-type p53-expressing AML by the novel small molecule HDM2 inhibitor CGM097. Mol. Cancer Ther. 14, 2249–2259 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  • Maser, T. et al. The MDM2 inhibitor CGM097 combined with the BET inhibitor OTX015 induces cell death and inhibits tumor growth in models of neuroblastoma. Cancer Med 9, 8144–8158 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Portman, N. et al. MDM2 inhibition in combination with endocrine therapy and CDK4/6 inhibition for the treatment of ER-positive breast cancer. Breast Cancer Res 22, 87 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Carvajal, L. A. et al. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci. Transl. Med. 10, eaao3003 (2018).

    Article PubMed PubMed Central Google Scholar

  • Saleh, M. N. et al. Phase 1 Trial of ALRN-6924, a Dual Inhibitor of MDMX and MDM2, in Patients with Solid Tumors and Lymphomas Bearing Wild-Type. Clin Cancer Res 27, 5236–5247 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Kannan, S., Partridge, A. W., Lane, D. P. & Verma, C. S. The dual interactions of p53 with MDM2 and p300: implications for the design of MDM2 inhibitors. Int. J. Mol. Sci. 20, 5996 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • Stein, E. M. et al. Results from a first-in-human phase I study of siremadlin (HDM201) in patients with advanced wild-type TP53 solid tumors and acute leukemia. Clin. Cancer Res 28, 870–881 (2022).

    Article PubMed CAS Google Scholar

  • Stachyra-Valat, T. et al. Abstract 1239: NVP-HDM201: Biochemical and biophysical profile of a novel highly potent and selective PPI inhibitor of p53-Mdm2. Cancer Res 76, 1239–1239 (2016).

    Article Google Scholar

  • Ravandi, F. et al. A phase I trial of the human double minute 2 inhibitor (MK-8242) in patients with refractory/recurrent acute myelogenous leukemia (AML). Leuk. Res 48, 92–100 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Wagner, A. J. et al. Phase I trial of the human double minute 2 inhibitor MK-8242 in patients with advanced solid tumors. J. Clin. Oncol. 35, 1304–1311 (2017).

    Article PubMed PubMed Central CAS Google Scholar

  • Kang, M. H. et al. Initial testing (stage 1) of MK-8242-A novel MDM2 inhibitor-by the pediatric preclinical testing program. Pediatr. Blood Cancer 63, 1744–1752 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Cornillie, J. et al. Anti-tumor activity of the MDM2-TP53 inhibitor BI-907828 in dedifferentiated liposarcoma patient-derived xenograft models harboring MDM2 amplification. Clin. Transl. Oncol. 22, 546–554 (2020).

    Article PubMed CAS Google Scholar

  • Zhou, J. et al. The ubiquitin ligase MDM2 sustains STAT5 stability to control T cell-mediated antitumor immunity. Nat. Immunol. 22, 460–470 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Aguilar, A. et al. Discovery of 4-((3’R,4’S,5’R)-6″-Chloro-4’-(3-chloro-2-fluorophenyl)-1’-ethyl-2″-oxodispiro[cyclohexane-1,2’-pyrrolidine-3’,3″-indoline]-5’-carboxamido)bicyclo[2.2.2]octane-1-carboxylicAcid (AA-115/APG-115): a potent and orally active murine double minute 2 (MDM2) inhibitor in clinical development. J. Med. Chem. 60, 2819–2839 (2017).

  • Yi, H. et al. A novel small molecule inhibitor of MDM2-p53 (APG-115) enhances radiosensitivity of gastric adenocarcinoma. J. Exp. Clin. Cancer Res. 37, 97 (2018).

    Article PubMed PubMed Central Google Scholar

  • Takahashi, S. et al. Safety and pharmaco*kinetics of milademetan, a MDM2 inhibitor, in Japanese patients with solid tumors: A phase I study. Cancer Sci. 112, 2361–2370 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Han, X., Wei, W. & Sun, Y. PROTAC degraders with ligands recruiting MDM2 E3 ubiquitin ligase: an updated perspective. Acta Mater. Med 1, 244–259 (2022).

    PubMed PubMed Central Google Scholar

  • Wang, B. et al. Development of selective small molecule MDM2 degraders based on nutlin. Eur. J. Med. Chem. 176, 476–491 (2019).

    Article PubMed Google Scholar

  • Wang, B. et al. Development of MDM2 degraders based on ligands derived from Ugi reactions: Lessons and discoveries. Eur. J. Med. Chem. 219, 113425 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Li, Y. et al. Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. J. Med. Chem. 62, 448–466 (2019).

    Article PubMed CAS Google Scholar

  • Terzian, T. et al. The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev. 22, 1337–1344 (2008).

    Article PubMed PubMed Central CAS Google Scholar

  • de Andrade, K. C. et al. The TP53 database: transition from the international agency for research on cancer to the US national cancer institute. Cell Death Differ. 29, 1071–1073 (2022).

    Article PubMed PubMed Central Google Scholar

  • Yu, X., Narayanan, S., Vazquez, A. & Carpizo, D. R. Small molecule compounds targeting the p53 pathway: are we finally making progress? Apoptosis 19, 1055–1068 (2014).

    Article PubMed PubMed Central CAS Google Scholar

  • Miller, J. J., Gaiddon, C. & Storr, T. A balancing act: using small molecules for therapeutic intervention of the p53 pathway in cancer. Chem. Soc. Rev. 49, 6995–7014 (2020).

    Article PubMed CAS Google Scholar

  • Lopes, E. A., Gomes, S., Saraiva, L. & Santos, M. M. M. Small molecules targeting mutant P53: a promising approach for cancer treatment. Curr. Med. Chem. 26, 7323–7336 (2019).

    Article PubMed CAS Google Scholar

  • Silva, J. L. et al. Recent synthetic approaches towards small molecule reactivators of p53. Biomolecules 10, 635 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Binayke, A. et al. Awakening the guardian of genome: reactivation of mutant p53. Cancer Chemother. Pharmacol. 83, 1–15 (2019).

    Article PubMed CAS Google Scholar

  • Bykov, V. J. N. et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat. Med. 8, 282–288 (2002).

    Article PubMed CAS Google Scholar

  • Wang, T., Lee, K., Rehman, A. & Daoud, S. S. PRIMA-1 induces apoptosis by inhibiting JNK signaling but promoting the activation of Bax. Biochem. Biophys. Res. Commun. 352, 203–212 (2007).

    Article PubMed CAS Google Scholar

  • Wiman, K. G. Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Oncogene 29, 4245–4252 (2010).

    Article PubMed CAS Google Scholar

  • Bykov, V. J. N. et al. PRIMA-1(MET) synergizes with cisplatin to induce tumor cell apoptosis. Oncogene 24, 3484–3491 (2005).

    Article PubMed CAS Google Scholar

  • Zandi, R. et al. PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53. Clin. Cancer Res. 17, 2830–2841 (2011).

    Article PubMed CAS Google Scholar

  • Saha, M. N. et al. PRIMA-1Met/APR-246 displays high antitumor activity in multiple myeloma by induction of p73 and Noxa. Mol. Cancer Ther. 12, 2331–2341 (2013).

    Article PubMed CAS Google Scholar

  • Müller, M. et al. Combining APR-246 and HDAC-inhibitors: a novel targeted treatment option for neuroblastoma. Cancers (Basel) 13, 4476 (2021).

    Article PubMed Google Scholar

  • Liu, D. S. H. et al. APR-246 potently inhibits tumour growth and overcomes chemoresistance in preclinical models of oesophageal adenocarcinoma. Gut 64, 1506–1516 (2015).

    Article PubMed CAS Google Scholar

  • Mohell, N. et al. APR-246 overcomes resistance to cisplatin and doxorubicin in ovarian cancer cells. Cell Death Dis. 6, e1794 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  • Kobayashi, T. et al. APR-246 induces apoptosis and enhances chemo-sensitivity via activation of ROS and TAp73-Noxa signal in oesophageal squamous cell cancer with TP53 missense mutation. Br. J. Cancer 125, 1523–1532 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Ceder, S. et al. Mutant p53-reactivating compound APR-246 synergizes with asparaginase in inducing growth suppression in acute lymphoblastic leukemia cells. Cell Death Dis. 12, 709 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Nahi, H. et al. Effects of PRIMA-1 on chronic lymphocytic leukaemia cells with and without hemizygous p53 deletion. Br. J. Haematol. 127, 285–291 (2004).

    Article PubMed CAS Google Scholar

  • Nahi, H. et al. Mutated and non-mutated TP53 as targets in the treatment of leukaemia. Br. J. Haematol. 141, 445–453 (2008).

    Article PubMed CAS Google Scholar

  • Chipuk, J. E., Maurer, U., Green, D. R. & Schuler, M. Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 4, 371–381 (2003).

    Article PubMed CAS Google Scholar

  • Lambert, J. M. R. et al. Mutant p53 reactivation by PRIMA-1MET induces multiple signaling pathways converging on apoptosis. Oncogene 29, 1329–1338 (2010).

    Article PubMed CAS Google Scholar

  • Ali, D. et al. APR-246 exhibits anti-leukemic activity and synergism with conventional chemotherapeutic drugs in acute myeloid leukemia cells. Eur. J. Haematol. 86, 206–215 (2011).

    Article PubMed CAS Google Scholar

  • Li, X.-L. et al. PRIMA-1met (APR-246) inhibits growth of colorectal cancer cells with different p53 status through distinct mechanisms. Oncotarget 6, 36689–36699 (2015).

    Article PubMed PubMed Central Google Scholar

  • Patyka, M. et al. Sensitivity to PRIMA-1MET is associated with decreased MGMT in human glioblastoma cells and glioblastoma stem cells irrespective of p53 status. Oncotarget 7, 60245–60269 (2016).

    Article PubMed PubMed Central Google Scholar

  • Menichini, P. et al. Antitumor effects of PRIMA-1 and PRIMA-1 (APR246) in hematological malignancies: still a mutant P53-dependent affair? Cells. 10, (2021).

  • Tessoulin, B. et al. PRIMA-1Met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance. Blood 124, 1626–1636 (2014).

    Article PubMed CAS Google Scholar

  • Mlakar, V. et al. PRIMA-1-induced neuroblastoma cell death is modulated by p53 and mycn through glutathione level. J. Exp. Clin. Cancer Res. 38, 69 (2019).

    Article PubMed PubMed Central Google Scholar

  • Peng, X. et al. APR-246/PRIMA-1MET inhibits thioredoxin reductase 1 and converts the enzyme to a dedicated NADPH oxidase. Cell Death Dis. 4, e881 (2013).

    Article PubMed PubMed Central CAS Google Scholar

  • Bykov, V. J. N. et al. Targeting of mutant p53 and the cellular redox balance by APR-246 as a strategy for efficient cancer therapy. Front. Oncol. 6, 21 (2016).

    Article PubMed PubMed Central Google Scholar

  • Haffo, L. et al. Inhibition of the glutaredoxin and thioredoxin systems and ribonucleotide reductase by mutant p53-targeting compound APR-246. Sci. Rep. 8, 12671 (2018).

    Article PubMed PubMed Central Google Scholar

  • Birsen, R. et al. APR-246 induces early cell death by ferroptosis in acute myeloid leukemia. Haematologica 107, 403–416 (2022).

    Article PubMed CAS Google Scholar

  • Liu, D. S. et al. Inhibiting the system x/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat. Commun. 8, 14844 (2017).

    Article PubMed PubMed Central CAS Google Scholar

  • Fujihara, K. M. et al. Eprenetapopt triggers ferroptosis, inhibits NFS1 cysteine desulfurase, and synergizes with serine and glycine dietary restriction. Sci. Adv. 8, eabm9427 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Teoh, P. J. et al. PRIMA-1 targets the vulnerability of multiple myeloma of deregulated protein homeostasis through the perturbation of ER stress via p73 demethylation. Oncotarget 7, 61806–61819 (2016).

    Article PubMed PubMed Central Google Scholar

  • Ali, D. et al. Anti-leukaemic effects induced by APR-246 are dependent on induction of oxidative stress and the NFE2L2/HMOX1 axis that can be targeted by PI3K and mTOR inhibitors in acute myeloid leukaemia cells. Br. J. Haematol. 174, 117–126 (2016).

    Article PubMed CAS Google Scholar

  • Sallman, D. A. et al. Eprenetapopt (APR-246) and Azacitidine in -Mutant Myelodysplastic Syndromes. J. Clin. Oncol. 39, 1584–1594 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Cluzeau, T. et al. Eprenetapopt plus azacitidine in -mutated myelodysplastic syndromes and acute myeloid leukemia: a phase II study by the groupe Francophone des Myélodysplasies (GFM). J. Clin. Oncol. 39, 1575–1583 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Lehmann, S. et al. Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J. Clin. Oncol. 30, 3633–3639 (2012).

    Article PubMed CAS Google Scholar

  • Gourley, C. et al. PISARRO: A EUTROC phase Ib study of APR-246 in combination with carboplatin (C) and pegylated liposomal doxorubicin (PLD) in platinum sensitive relapsed high grade serous ovarian cancer (HGSOC). J. Clin. Oncol. 34, 5571–5571 (2016).

    Article Google Scholar

  • Mishra, A. et al. Eprenetapopt plus azacitidine after allogeneic hematopoietic stem-cell transplantation for -mutant acute myeloid leukemia and myelodysplastic syndromes. J. Clin. Oncol., JCO2200181 (2022).

  • Maslah, N. et al. Synergistic effects of PRIMA-1 (APR-246) and 5-azacitidine in -mutated myelodysplastic syndromes and acute myeloid leukemia. Haematologica 105, 1539–1551 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Welch, J. S. et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N. Engl. J. Med. 375, 2023–2036 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Lambert, J. M. R. et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15, 376–388 (2009).

    Article PubMed CAS Google Scholar

  • Sun, X. Z. et al. Formation of disulfide bond in p53 correlates with inhibition of DNA binding and tetramerization. Antioxid. Redox Signal 5, 655–665 (2003).

    Article PubMed CAS Google Scholar

  • Wassman, C. D. et al. Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53. Nat. Commun. 4, 1407 (2013).

    Article PubMed Google Scholar

  • Degtjarik, O. et al. Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Nat. Commun. 12, 7057 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Soignet, S. L. et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N. Engl. J. Med. 339, 1341–1348 (1998).

    Article PubMed CAS Google Scholar

  • Zhang, X.-W. et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 328, 240–243 (2010).

    Article PubMed CAS Google Scholar

  • Liu, Q., Hilsenbeck, S. & Gazitt, Y. Arsenic trioxide-induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood 101, 4078–4087 (2003).

    Article PubMed CAS Google Scholar

  • Zheng, T. et al. Nutlin-3 overcomes arsenic trioxide resistance and tumor metastasis mediated by mutant p53 in Hepatocellular Carcinoma. Mol. Cancer 13, 133 (2014).

    Article PubMed PubMed Central Google Scholar

  • Li, Y. et al. Arsenic trioxide induces apoptosis and G2/M phase arrest by inducing Cbl to inhibit PI3K/Akt signaling and thereby regulate p53 activation. Cancer Lett. 284, 208–215 (2009).

    Article PubMed CAS Google Scholar

  • Chen, S. et al. Arsenic trioxide rescues structural p53 mutations through a cryptic allosteric site. Cancer Cell. 39 (2021).

  • Tang, Y. et al. Repurposing antiparasitic antimonials to noncovalently rescue temperature-sensitive p53 mutations. Cell Rep. 39, 110622 (2022).

    Article PubMed CAS Google Scholar

  • Liarte, D. B. & Murta, S. M. F. Selection and phenotype characterization of potassium antimony tartrate-resistant populations of four New World Leishmania species. Parasitol. Res. 107, 205–212 (2010).

    Article PubMed Google Scholar

  • Dumetz, F. et al. Molecular preadaptation to antimony resistance in leishmania donovani on the indian subcontinent. mSphere. 3 (2018).

  • Wang, B. et al. The antiparasitic drug, potassium antimony tartrate, inhibits tumor angiogenesis and tumor growth in nonsmall-cell lung cancer. J. Pharmacol. Exp. Ther. 352, 129–138 (2015).

    Article PubMed Google Scholar

  • Zhang, Y.-K. et al. Establishment and characterization of arsenic trioxide resistant KB/ATO cells. Acta Pharm. Sin. B 7, 564–570 (2017).

    Article PubMed PubMed Central Google Scholar

  • Lecureur, V., Lagadic-Gossmann, D. & Fardel, O. Potassium antimonyl tartrate induces reactive oxygen species-related apoptosis in human myeloid leukemic HL60 cells. Int. J. Oncol. 20, 1071–1076 (2002).

    PubMed CAS Google Scholar

  • Lecureur, V. et al. Potassium antimonyl tartrate induces caspase- and reactive oxygen species-dependent apoptosis in lymphoid tumoral cells. Br. J. Haematol. 119, 608–615 (2002).

    Article PubMed CAS Google Scholar

  • Butler, J. S. & Loh, S. N. Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain. Biochemistry 42, 2396–2403 (2003).

    Article PubMed CAS Google Scholar

  • Bullock, A. N. et al. Thermodynamic stability of wild-type and mutant p53 core domain. Proc. Natl Acad. Sci. USA 94, 14338–14342 (1997).

    Article PubMed PubMed Central CAS Google Scholar

  • Yu, X., Vazquez, A., Levine, A. J. & Carpizo, D. R. Allele-specific p53 mutant reactivation. Cancer Cell 21, 614–625 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Yu, X. et al. Small molecule restoration of wildtype structure and function of mutant p53 using a novel zinc-metallochaperone based mechanism. Oncotarget 5, 8879–8892 (2014).

    Article PubMed PubMed Central Google Scholar

  • Yu, X. et al. Thiosemicarbazones functioning as zinc metallochaperones to reactivate mutant p53. Mol. Pharmacol. 91, 567–p575 (2017).

    Article PubMed PubMed Central CAS Google Scholar

  • Blanden, A. R. et al. Synthetic metallochaperone ZMC1 rescues mutant p53 conformation by transporting zinc into cells as an ionophore. Mol. Pharmacol. 87, 825–831 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  • Na, B. et al. BRCA1Therapeutic targeting of and mutant breast cancer through mutant p53 reactivation. NPJ breast cancer 5, 14 (2019).

    Article PubMed PubMed Central Google Scholar

  • Yu, X. et al. Zinc metallochaperones reactivate mutant p53 using an ON/OFF switch mechanism: a new paradigm in cancer therapeutics. Clin. Cancer Res. 24, 4505–4517 (2018).

    Article PubMed PubMed Central CAS Google Scholar

  • Zaman, S. et al. Combinatorial therapy of zinc metallochaperones with mutant p53 reactivation and diminished copper binding. Mol. Cancer Ther. 18, 1355–1365 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • Salim, K. Y., Maleki Vareki, S., Danter, W. R. & Koropatnick, J. COTI-2, a novel small molecule that is active against multiple human cancer cell lines in vitro and in vivo. Oncotarget 7, 41363–41379 (2016).

    Article PubMed PubMed Central Google Scholar

  • Lindemann, A. et al. COTI-2, a novel thiosemicarbazone derivative, exhibits antitumor activity in HNSCC through p53-dependent and -independent Mechanisms. Clin. Cancer Res. 25, 5650–5662 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • Bormio Nunes, J. et al. Cancer cell resistance against the clinically investigated thiosemicarbazone COTI-2 is based on formation of intracellular copper complex glutathione adducts and ABCC1-mediated efflux. J. Med. Chem. 63, 13719–13732 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Synnott, N. C., O’Connell, D., Crown, J. & Duffy, M. J. COTI-2 reactivates mutant p53 and inhibits growth of triple-negative breast cancer cells. Breast Cancer Res. Treat. 179, 47–56 (2020).

    Article PubMed CAS Google Scholar

  • Guo, Y., Zhu, X. & Sun, X. COTI-2 induces cell apoptosis in pediatric acute lymphoblastic leukemia via upregulation of miR-203. Bioengineered 11, 201–208 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Maleki Vareki, S., Salim, K., Danter, W. & Koropatnick, J. Novel anti-cancer drug COTI-2 synergizes with therapeutic agents and does not induce resistance or exhibit cross-resistance in human cancer cell lines. PLoS One 13, e0191766 (2018).

    Article PubMed PubMed Central Google Scholar

  • Foster, B. A., Coffey, H. A., Morin, M. J. & Rastinejad, F. Pharmacological rescue of mutant p53 conformation and function. Science 286, 2507–2510 (1999).

    Article PubMed CAS Google Scholar

  • Rippin, T. M. et al. Characterization of the p53-rescue drug CP-31398 in vitro and in living cells. Oncogene 21, 2119–2129 (2002).

    Article PubMed CAS Google Scholar

  • Wischhusen, J. et al. CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death. Oncogene 22, 8233–8245 (2003).

    Article PubMed CAS Google Scholar

  • Wang, W., Takimoto, R., Rastinejad, F. & El-Deiry, W. S. Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol. Cell. Biol. 23, 2171–2181 (2003).

    Article PubMed PubMed Central CAS Google Scholar

  • Zache, N. et al. Mutant p53 targeting by the low molecular weight compound STIMA-1. Mol. Oncol. 2, 70–80 (2008).

    Article PubMed PubMed Central Google Scholar

  • Bykov, V. J. N. et al. Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. J. Biol. Chem. 280, 30384–30391 (2005).

    Article PubMed CAS Google Scholar

  • Bou-Hanna, C. et al. Acute cytotoxicity of MIRA-1/NSC19630, a mutant p53-reactivating small molecule, against human normal and cancer cells via a caspase-9-dependent apoptosis. Cancer Lett. 359, 211–217 (2015).

    Article PubMed CAS Google Scholar

  • Saha, M. et al. Small molecule MIRA-1 induces in vitro and in vivo anti-myeloma activity and synergizes with current anti-myeloma agents. Br. J. Cancer 110, 2224–2231 (2014).

    Article PubMed PubMed Central CAS Google Scholar

  • Durairaj, G. et al. Discovery of compounds that reactivate p53 mutants in vitro and in vivo. Cell Chem Biol. 29 (2022).

  • Kaar, J. L. et al. Stabilization of mutant p53 via alkylation of cysteines and effects on DNA binding. Protein Sci. 19, 2267–2278 (2010).

    Article PubMed PubMed Central CAS Google Scholar

  • Bauer, M. R. et al. Targeting cavity-creating p53 cancer mutations with small-molecule stabilizers: the Y220X paradigm. ACS Chem. Biol. 15, 657–668 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Basse, N. et al. Toward the rational design of p53-stabilizing drugs: probing the surface of the oncogenic Y220C mutant. Chem. Biol. 17, 46–56 (2010).

    Article PubMed CAS Google Scholar

  • Bykov, V. J. N. & Wiman, K. G. Mutant p53 reactivation by small molecules makes its way to the clinic. FEBS Lett. 588, 2622–2627 (2014).

    Article PubMed CAS Google Scholar

  • Boeckler, F. M. et al. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc. Natl. Acad. Sci. USA 105, 10360–10365 (2008).

    Article PubMed PubMed Central CAS Google Scholar

  • Liu, X. et al. Small molecule induced reactivation of mutant p53 in cancer cells. Nucleic Acids Res. 41, 6034–6044 (2013).

    Article PubMed PubMed Central CAS Google Scholar

  • Wilcken, R. et al. Halogen-enriched fragment libraries as leads for drug rescue of mutant p53. J. Am. Chem. Soc. 134, 6810–6818 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Joerger, A. C. et al. Exploiting transient protein states for the design of small-molecule stabilizers of mutant p53. Structure 23, 2246–2255 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  • Bauer, M. R. et al. Harnessing fluorine-sulfur contacts and multipolar interactions for the design of p53 mutant Y220C rescue drugs. ACS Chem. Biol. 11, 2265–2274 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Baud, M. G. J. et al. Aminobenzothiazole derivatives stabilize the thermolabile p53 cancer mutant Y220C and show anticancer activity in p53-Y220C cell lines. Eur. J. Med. Chem. 152, 101–114 (2018).

    Article PubMed PubMed Central CAS Google Scholar

  • Bauer, M. R. et al. A structure-guided molecular chaperone approach for restoring the transcriptional activity of the p53 cancer mutant Y220C. Future Med. Chem. 11, 2491–2504 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • Raghavan, V., Agrahari, M. & Gowda, D. Virtual screening of p53 mutants reveals Y220S as an additional rescue drug target for PhiKan083 with higher binding characteristics. Comput. Biol. Chem. 80, 398–408 (2019).

    Article PubMed CAS Google Scholar

  • Miller, J. et al. Multifunctional compounds for activation of the p53-Y220C mutant in cancer. Chemistry 24, 17734–17742 (2018).

    Article PubMed CAS Google Scholar

  • Dong, T. et al. Hybrid molecular dynamics for elucidating cooperativity between halogen bond and water molecules during the interaction of p53-Y220C and the PhiKan5196 complex. Front. Chem. 8, 344 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Synnott, N. C. et al. Mutant p53 as a therapeutic target for the treatment of triple-negative breast cancer: Preclinical investigation with the anti-p53 drug, PK11007. Cancer Lett. 414 (2018).

  • Bauer, M. R., Joerger, A. C. & Fersht, A. R. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells. Proc. Natl. Acad. Sci. USA 113, E5271–E5280 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Dumble, M. et al. Abstract LB006: PC14586: The first orally bioavailable small molecule reactivator of Y220C mutant p53 in clinical development. Cancer Res 81, LB006–LB006 (2021).

    Article Google Scholar

  • Dumbrava, E. E. et al. First-in-human study of PC14586, a small molecule structural corrector of Y220C mutant p53, in patients with advanced solid tumors harboring a TP53 Y220C mutation. J. Clin. Oncol. 40, 3003–3003 (2022).

    Article Google Scholar

  • Wang, G. & Fersht, A. R. First-order rate-determining aggregation mechanism of p53 and its implications. Proc. Natl. Acad. Sci. USA 109, 13590–13595 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Stenger, J. E. et al. p53 oligomerization and DNA looping are linked with transcriptional activation. EMBO J. 13, 6011–6020 (1994).

    Article PubMed PubMed Central CAS Google Scholar

  • Wang, G. & Fersht, A. R. Propagation of aggregated p53: Cross-reaction and coaggregation vs. seeding. Proc. Natl. Acad. Sci. USA 112, 2443–2448 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  • Levy, C. B. et al. Co-localization of mutant p53 and amyloid-like protein aggregates in breast tumors. Int. J. Biochem. Cell Biol. 43, 60–64 (2011).

    Article PubMed CAS Google Scholar

  • Xu, J. et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat. Chem. Biol. 7, 285–295 (2011).

    Article PubMed CAS Google Scholar

  • Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148, 1188–1203 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Nelson, R. et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    Article PubMed PubMed Central CAS Google Scholar

  • Ghosh, S. et al. Investigating the intrinsic aggregation potential of evolutionarily conserved segments in p53. Biochemistry 53, 5995–6010 (2014).

    Article PubMed CAS Google Scholar

  • Lei, J. et al. Self-aggregation and coaggregation of the p53 core fragment with its aggregation gatekeeper variant. Phys. Chem. Chem. Phys. 18, 8098–8107 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Soragni, A. et al. A designed inhibitor of p53 Aggregation rescues p53 tumor suppression in ovarian carcinomas. Cancer Cell. 29 (2016).

  • Lei, J. et al. Molecular dynamics study on the inhibition mechanisms of ReACp53 peptide for p53-R175H mutant aggregation. Phys. Chem. Chem. Phys. 23, 23032–23041 (2021).

    Article PubMed CAS Google Scholar

  • Zhang, Y. et al. Therapeutic potential of ReACp53 targeting mutant p53 protein in CRPC. Prostate Cancer Prostatic Dis. 23, 160–171 (2020).

    Article PubMed CAS Google Scholar

  • Neal, A. et al. Combining ReACp53 with carboplatin to target high-grade serous ovarian cancers. Cancers (Basel). 13 (2021).

  • Zhang, Y. et al. Proteomic identification of ERP29 as a key chemoresistant factor activated by the aggregating p53 mutant Arg282Trp. Oncogene 36, 5473–5483 (2017).

    Article PubMed CAS Google Scholar

  • Wang, G. & Fersht, A. R. Multisite aggregation of p53 and implications for drug rescue. Proc. Natl. Acad. Sci. USA 114, E2634–E2643 (2017).

    PubMed PubMed Central CAS Google Scholar

  • Palanikumar, L. et al. Protein mimetic amyloid inhibitor potently abrogates cancer-associated mutant p53 aggregation and restores tumor suppressor function. Nat. Commun. 12, 3962 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Kumar, S. & Hamilton, A. D. α-helix mimetics as modulators of Aβ self-assembly. J. Am. Chem. Soc. 139, 5744–5755 (2017).

    Article PubMed CAS Google Scholar

  • Kumar, S. et al. Islet amyloid-induced cell death and bilayer integrity loss share a molecular origin targetable with oligopyridylamide-based α-helical mimetics. Chem. Biol. 22, 369–378 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  • Miller, J. J. et al. Bifunctional ligand design for modulating mutant p53 aggregation in cancer. Chem. Sci. 10, 10802–10814 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • Li, Y. & Prives, C. Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Oncogene 26, 2220–2225 (2007).

    Article PubMed CAS Google Scholar

  • Wiech, M. et al. Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2. PLoS One 7, e51426 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Muller, P. et al. Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene 27, 3371–3383 (2008).

    Article PubMed CAS Google Scholar

  • Tutuska, K. et al. Statin as anti-cancer therapy in autochthonous T-lymphomas expressing stabilized gain-of-function mutant p53 proteins. Cell Death Dis. 11, 274 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Alexandrova, E. M., Xu, S. & Moll, U. M. Ganetespib synergizes with cyclophosphamide to improve survival of mice with autochthonous tumors in a mutant p53-dependent manner. Cell Death Dis. 8, e2683 (2017).

    Article PubMed PubMed Central CAS Google Scholar

  • Cooper, B. et al. Peptides as a platform for targeted therapeutics for cancer: peptide-drug conjugates (PDCs). Chem. Soc. Rev. 50, 1480–1494 (2021).

    Article PubMed CAS Google Scholar

  • Saw, P., Xu, X., Kim, S. & Jon, S. Biomedical Applications of a Novel Class of High-Affinity Peptides. Acc. Chem. Res. 54, 3576–3592 (2021).

    Article PubMed CAS Google Scholar

  • Friedler, A. et al. A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc. Natl. Acad. Sci. USA 99, 937–942 (2002).

    Article PubMed PubMed Central CAS Google Scholar

  • Friedler, A. et al. Structural distortion of p53 by the mutation R249S and its rescue by a designed peptide: implications for “mutant conformation”. J. Mol. Biol. 336, 187–196 (2004).

    Article PubMed CAS Google Scholar

  • Friedler, A., Veprintsev, D., Hansson, L. & Fersht, A. Kinetic instability of p53 core domain mutants: implications for rescue by small molecules. J. Biol. Chem. 278, 24108–24112 (2003).

    Article PubMed CAS Google Scholar

  • Issaeva, N. et al. Rescue of mutants of the tumor suppressor p53 in cancer cells by a designed peptide. Proc. Natl Acad. Sci. USA 100, 13303–13307 (2003).

    Article PubMed PubMed Central CAS Google Scholar

  • Tal, P. et al. Cancer therapeutic approach based on conformational stabilization of mutant p53 protein by small peptides. Oncotarget 7, 11817–11837 (2016).

    Article PubMed PubMed Central Google Scholar

  • Yamada, T. et al. A peptide fragment of azurin induces a p53-mediated cell cycle arrest in human breast cancer cells. Mol. Cancer Ther. 8, 2947–2958 (2009).

    Article PubMed CAS Google Scholar

  • Taylor, B. N. et al. Noncationic peptides obtained from azurin preferentially enter cancer cells. Cancer Res. 69, 537–546 (2009).

    Article PubMed CAS Google Scholar

  • Yamada, T. et al. Internalization of bacterial redox protein azurin in mammalian cells: entry domain and specificity. Cell. Microbiol. 7, 1418–1431 (2005).

    Article PubMed CAS Google Scholar

  • Bizzarri, A. R. et al. Interaction of an anticancer peptide fragment of azurin with p53 and its isolated domains studied by atomic force spectroscopy. Int J. Nanomed. 6, 3011–3019 (2011).

    Article CAS Google Scholar

  • Signorelli, S. et al. Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies. Biochim Biophys. Acta Gen. Subj. 1861, 910–921 (2017).

    Article PubMed CAS Google Scholar

  • Yamada, T. et al. p28, a first in class peptide inhibitor of cop1 binding to p53. Br. J. Cancer 108, 2495–2504 (2013).

    Article PubMed PubMed Central CAS Google Scholar

  • Yamada, T., Das Gupta, T. K. & Beattie, C. W. p28, an anionic cell-penetrating peptide, increases the activity of wild type and mutated p53 without altering its conformation. Mol. Pharm. 10, 3375–3383 (2013).

    Article PubMed CAS Google Scholar

  • Yamada, T., Das Gupta, T. & Beattie, C. p28-mediated activation of p53 in G2-M phase of the cell cycle enhances the efficacy of DNA damaging and antimitotic chemotherapy. Cancer Res. 76, 2354–2365 (2016).

    Article PubMed CAS Google Scholar

  • Warso, M. A. et al. A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours. Br. J. Cancer 108, 1061–1070 (2013).

    Article PubMed PubMed Central CAS Google Scholar

  • Lulla, R. R. et al. Phase I trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: A Pediatric Brain Tumor Consortium Study. Neuro Oncol. 18, 1319–1325 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Jia, L. et al. Preclinical pharmaco*kinetics, metabolism, and toxicity of azurin-p28 (NSC745104) a peptide inhibitor of p53 ubiquitination. Cancer Chemother. Pharmacol. 68, 513–524 (2011).

    Article PubMed CAS Google Scholar

  • Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).

    Article PubMed CAS Google Scholar

  • Hu, X. et al. A novel nanobody-heavy chain antibody against Angiopoietin-like protein 3 reduces plasma lipids and relieves nonalcoholic fatty liver disease. J. Nanobiotechnology 20, 237 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Zeng, Z. et al. Activatable cancer sono-immunotherapy using semiconducting polymer nanobodies. Adv Mater. e2203246, (2022).

  • Hong, J. et al. Dromedary camel nanobodies broadly neutralize SARS-CoV-2 variants. Proc. Natl. Acad. Sci. USA 119, e2201433119 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Bethuyne, J. et al. A nanobody modulates the p53 transcriptional program without perturbing its functional architecture. Nucleic Acids Res. 42, 12928–12938 (2014).

    Article PubMed PubMed Central CAS Google Scholar

  • Danilova, L. et al. The mutation-associated neoantigen functional expansion of specific T cells (MANAFEST) assay: a sensitive platform for monitoring antitumor immunity. Cancer Immunol. Res 6, 888–899 (2018).

    Article PubMed PubMed Central CAS Google Scholar

  • Hsiue, E. H.-C. et al. Targeting a neoantigen derived from a common mutation. Science. 371 (2021).

  • Malekzadeh, P. et al. Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. J. Clin. Invest 129, 1109–1114 (2019).

    Article PubMed Google Scholar

  • Nikolova, P. V. et al. Mechanism of rescue of common p53 cancer mutations by second-site suppressor mutations. EMBO J. 19, 370–378 (2000).

    Article PubMed PubMed Central CAS Google Scholar

  • Suad, O. et al. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations. J. Mol. Biol. 385, 249–265 (2009).

    Article PubMed CAS Google Scholar

  • Otsuka, K. et al. The screening of the second-site suppressor mutations of the common p53 mutants. Int. J. Cancer 121, 559–566 (2007).

    Article PubMed CAS Google Scholar

  • Joerger, A. C., Allen, M. D. & Fersht, A. R. Crystal structure of a superstable mutant of human p53 core domain. Insights into the mechanism of rescuing oncogenic mutations. J. Biol. Chem. 279, 1291–1296 (2004).

    Article PubMed CAS Google Scholar

  • Odell, A. F. et al. A novel p53 mutant found in iatrogenic urothelial cancers is dysfunctional and can be rescued by a second-site global suppressor mutation. J. Biol. Chem. 288, 16704–16714 (2013).

    Article PubMed PubMed Central CAS Google Scholar

  • Eldar, A. et al. Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein-DNA interactions. Nucleic Acids Res 41, 8748–8759 (2013).

    Article PubMed PubMed Central CAS Google Scholar

  • Brachmann, R. K. et al. Genetic selection of intragenic suppressor mutations that reverse the effect of common p53 cancer mutations. EMBO J. 17, 1847–1859 (1998).

    Article PubMed PubMed Central CAS Google Scholar

  • Joerger, A. C. & Fersht, A. R. Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene 26, 2226–2242 (2007).

    Article PubMed CAS Google Scholar

  • Nikolova, P. V., Henckel, J., Lane, D. P. & Fersht, A. R. Semirational design of active tumor suppressor p53 DNA binding domain with enhanced stability. Proc. Natl. Acad. Sci. USA 95, 14675–14680 (1998).

    Article PubMed PubMed Central CAS Google Scholar

  • Demir, Ö. et al. Ensemble-based computational approach discriminates functional activity of p53 cancer and rescue mutants. PLoS Comput. Biol. 7, e1002238 (2011).

    Article PubMed PubMed Central CAS Google Scholar

  • Merabet, A. et al. Mutants of the tumour suppressor p53 L1 loop as second-site suppressors for restoring DNA binding to oncogenic p53 mutations: structural and biochemical insights. Biochem. J. 427, 225–236 (2010).

    Article PubMed CAS Google Scholar

  • Chattopadhyay, G. et al. Mechanistic insights into global suppressors of protein folding defects. PLoS Genet 18, e1010334 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Kamaraj, B. & Bogaerts, A. Structure and function of p53-DNA complexes with inactivation and rescue mutations: a molecular dynamics simulation study. PLoS One 10, e0134638 (2015).

    Article PubMed PubMed Central Google Scholar

  • Ramani, R. G. & Jacob, S. G. Prediction of cancer rescue p53 mutants in silico using Naïve Bayes learning methodology. Protein Pept. Lett. 20, 1280–1291 (2013).

    Article PubMed CAS Google Scholar

  • Wallentine, B. D. et al. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue. Acta Crystallogr 69, 2146–2156 (2013).

    CAS Google Scholar

  • Joerger, A. C. et al. Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations. J. Biol. Chem. 280, 16030–16037 (2005).

    Article PubMed CAS Google Scholar

  • Viadiu, H., Fronza, G. & Inga, A. Structural studies on mechanisms to activate mutant p53. Subcell. Biochem. 85, 119–132 (2014).

    Article PubMed Google Scholar

  • Selivanova, G. et al. Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat. Med. 3, 632–638 (1997).

    Article PubMed CAS Google Scholar

  • Selivanova, G. et al. Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain. Mol. Cell. Biol. 19, 3395–3402 (1999).

    Article PubMed PubMed Central CAS Google Scholar

  • Kaldmäe, M. et al. A “spindle and thread” mechanism unblocks p53 translation by modulating N-terminal disorder. Structure 30, (2022).

  • Wang, T.-H., Li, W.-T., Yu, S.-H. & Au, L.-C. The use of 10-23 DNAzyme to selectively destroy the allele of mRNA with a unique purine-pyrimidine dinucleotide. Oligonucleotides 18, 295–299 (2008).

    Article PubMed CAS Google Scholar

  • Iyer, S. V. et al. Allele-specific silencing of mutant p53 attenuates dominant-negative and gain-of-function activities. Oncotarget 7, 5401–5415 (2016).

    Article PubMed Google Scholar

  • Hoffman-Luca, C. G. et al. Elucidation of Acquired Resistance to Bcl-2 and MDM2 Inhibitors in Acute Leukemia In Vitro and In Vivo. Clin. Cancer Res 21, 2558–2568 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  • Decaudin, D. et al. Preclinical evaluation of drug combinations identifies co-inhibition of Bcl-2/XL/W and MDM2 as a potential therapy in uveal melanoma. Eur. J. Cancer. 126 (2020).

  • Han, X. et al. Nonsense-mediated mRNA decay: a ‘nonsense’ pathway makes sense in stem cell biology. Nucleic Acids Res. 46, 1038–1051 (2018).

    Article PubMed CAS Google Scholar

  • Pan, Y. et al. RNA dysregulation: an expanding source of cancer immunotherapy targets. Trends Pharmacol. Sci. 42, 268–282 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Hassin, O. & Oren, M. Drugging p53 in cancer: one protein, many targets. Nat. Rev. Drug. Discov. (2022).

  • Floquet, C., Deforges, J., Rousset, J.-P. & Bidou, L. Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res 39, 3350–3362 (2011).

    Article PubMed CAS Google Scholar

  • Bidou, L. et al. Characterization of new-generation aminoglycoside promoting premature termination codon readthrough in cancer cells. RNA Biol. 14, 378–388 (2017).

    Article PubMed PubMed Central Google Scholar

  • Gudikote, J. P. et al. Inhibition of nonsense-mediated decay rescues p53β/γ isoform expression and activates the p53 pathway in MDM2-overexpressing and select p53-mutant cancers. J. Biol. Chem. 297, 101163 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Lindeboom, R. G. H., Vermeulen, M., Lehner, B. & Supek, F. The impact of nonsense-mediated mRNA decay on genetic disease, gene editing and cancer immunotherapy. Nat. Genet. 51, 1645–1651 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  • Khajavi, M., Inoue, K. & Lupski, J. R. Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. Eur. J. Hum. Genet. 14, 1074–1081 (2006).

    Article PubMed CAS Google Scholar

  • Chen, J. et al. p53 isoform delta113p53 is a p53 target gene that antagonizes p53 apoptotic activity via BclxL activation in zebrafish. Genes Dev. 23, 278–290 (2009).

    Article PubMed PubMed Central CAS Google Scholar

  • Bourdon, J.-C. et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 19, 2122–2137 (2005).

    Article PubMed PubMed Central CAS Google Scholar

  • Senturk, S. et al. p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state. Proc. Natl Acad. Sci. USA 111, E3287–E3296 (2014).

    Article PubMed PubMed Central CAS Google Scholar

  • Khoury, M. P. & Bourdon, J.-C. p53 isoforms: an intracellular microprocessor? Genes Cancer 2, 453–465 (2011).

    Article PubMed PubMed Central CAS Google Scholar

  • Bourdon, J. C. p53 isoforms change p53 paradigm. Mol. Cell Oncol. 1, e969136 (2014).

    Article PubMed PubMed Central CAS Google Scholar

  • Marcel, V. et al. Δ160p53 is a novel N-terminal p53 isoform encoded by Δ133p53 transcript. FEBS Lett. 584, 4463–4468 (2010).

    Article PubMed CAS Google Scholar

  • Mondal, A. M. et al. Δ133p53α, a natural p53 isoform, contributes to conditional reprogramming and long-term proliferation of primary epithelial cells. Cell Death Dis. 9, 750 (2018).

    Article PubMed PubMed Central Google Scholar

  • Burslem, G. M. & Crews, C. M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 181, 102–114 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Li, Z. et al. Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature 575, 203–209 (2019).

    Article PubMed CAS Google Scholar

  • Takahashi, D. et al. AUTACs: cargo-specific degraders using selective autophagy. Mol. Cell. 76 (2019).

  • Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    Article PubMed PubMed Central CAS Google Scholar

  • Chapeau, E. A. et al. Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf mouse model. Proc. Natl. Acad. Sci. USA 114, 3151–3156 (2017).

    Article PubMed PubMed Central CAS Google Scholar

  • Wang, S. & Chen, F.-E. Small-molecule MDM2 inhibitors in clinical trials for cancer therapy. Eur. J. Med. Chem. 236, 114334 (2022).

    Article PubMed CAS Google Scholar

  • Sabapathy, K. & Lane, D. P. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat. Rev. Clin. Oncol. 15, 13–30 (2018).

    Article PubMed CAS Google Scholar

  • Vlatković, N., Crawford, K., Rubbi, C. P. & Boyd, M. T. Tissue-specific therapeutic targeting of p53 in cancer: one size does not fit all. Curr. Pharm. Des. 17, 618–630 (2011).

    Article PubMed Google Scholar

  • Gallo, D. et al. CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. Nature 604, 749–756 (2022).

    Article PubMed PubMed Central CAS Google Scholar

  • Rosenblum, D. et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci Adv. 6 (2020).

  • Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).

    Article PubMed CAS Google Scholar

  • Awad, M. M. et al. Acquired resistance to KRAS inhibition in cancer. N. Engl. J. Med. 384, 2382–2393 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  • Targeting p53 pathways: mechanisms, structures and advances in therapy (2024)
    Top Articles
    Does Windows 10 Need or Come With Antivirus in 2024?
    Long-Term Capital Gain Tax on Property: Strategies and Planning
    English Bulldog Puppies For Sale Under 1000 In Florida
    Katie Pavlich Bikini Photos
    Gamevault Agent
    Pieology Nutrition Calculator Mobile
    Hocus Pocus Showtimes Near Harkins Theatres Yuma Palms 14
    Hendersonville (Tennessee) – Travel guide at Wikivoyage
    Compare the Samsung Galaxy S24 - 256GB - Cobalt Violet vs Apple iPhone 16 Pro - 128GB - Desert Titanium | AT&T
    Vardis Olive Garden (Georgioupolis, Kreta) ✈️ inkl. Flug buchen
    Craigslist Dog Kennels For Sale
    Things To Do In Atlanta Tomorrow Night
    Non Sequitur
    Crossword Nexus Solver
    How To Cut Eelgrass Grounded
    Pac Man Deviantart
    Alexander Funeral Home Gallatin Obituaries
    Shasta County Most Wanted 2022
    Energy Healing Conference Utah
    Aaa Saugus Ma Appointment
    Geometry Review Quiz 5 Answer Key
    Hobby Stores Near Me Now
    Icivics The Electoral Process Answer Key
    Allybearloves
    Bible Gateway passage: Revelation 3 - New Living Translation
    Yisd Home Access Center
    Home
    Shadbase Get Out Of Jail
    Gina Wilson Angle Addition Postulate
    Celina Powell Lil Meech Video: A Controversial Encounter Shakes Social Media - Video Reddit Trend
    Walmart Pharmacy Near Me Open
    Marquette Gas Prices
    A Christmas Horse - Alison Senxation
    Ou Football Brainiacs
    Access a Shared Resource | Computing for Arts + Sciences
    Vera Bradley Factory Outlet Sunbury Products
    Pixel Combat Unblocked
    Cvs Sport Physicals
    Mercedes W204 Belt Diagram
    Mia Malkova Bio, Net Worth, Age & More - Magzica
    'Conan Exiles' 3.0 Guide: How To Unlock Spells And Sorcery
    Teenbeautyfitness
    Where Can I Cash A Huntington National Bank Check
    Topos De Bolos Engraçados
    Sand Castle Parents Guide
    Gregory (Five Nights at Freddy's)
    Grand Valley State University Library Hours
    Holzer Athena Portal
    Hello – Cornerstone Chapel
    Stoughton Commuter Rail Schedule
    Selly Medaline
    Latest Posts
    Article information

    Author: Rueben Jacobs

    Last Updated:

    Views: 6146

    Rating: 4.7 / 5 (57 voted)

    Reviews: 80% of readers found this page helpful

    Author information

    Name: Rueben Jacobs

    Birthday: 1999-03-14

    Address: 951 Caterina Walk, Schambergerside, CA 67667-0896

    Phone: +6881806848632

    Job: Internal Education Planner

    Hobby: Candle making, Cabaret, Poi, Gambling, Rock climbing, Wood carving, Computer programming

    Introduction: My name is Rueben Jacobs, I am a cooperative, beautiful, kind, comfortable, glamorous, open, magnificent person who loves writing and wants to share my knowledge and understanding with you.