Symmetric vs. Asymmetric Encryption: What's the Difference? (2024)

by Brett Daniel on 25/09/2023 2:32:20 PM

Symmetric vs. Asymmetric Encryption: What's the Difference? (1)

Graphic: In this blog post, we discuss the differences between symmetric encryption, a single-key encryption technique, and asymmetric encryption, also known as public-key cryptography, which uses private- and public-key pairs of encryption keys.

To transmit a key or not to transmit a key. That is the question.

There are two main forms of data encryption in use today: symmetric encryption and asymmetric encryption. Every day, when you're using your web browser, responding to emails, submitting website forms, and other activities, symmetric and asymmetric encryption processes are happening, sometimes unbeknownst to you. You may also be familiar with symmetric and asymmetric encryption because you have experience with OpenSSL, key management services, or maybe you've sent an encrypted email or encrypted a Microsoft Word or Adobe PDF file with a password before.

It's important to understand the differences between symmetric and asymmetric encryption and how these security technologies work in the everyday secure transfer of communications. You'll know what these terms mean when you see them, and you'll also be knowledgeable of how they work, their various iterations, aware of their capabilities, and know which is more advisable to implement with regard to securing and authenticating the origin of sensitive information.

In this blog post, we'll discuss the differences between symmetric and asymmetric encryption. At the end, we'll summarize these differences and discuss related encryption options for securing your sensitive data.

Symmetric vs. Asymmetric Encryption: What's the Difference? (2)

Graphic: Symmetric encryption uses a single key to encrypt and decrypt information.

What is symmetric encryption?

Symmetric encryption is a widely used data encryption technique whereby data is encrypted and decrypted using a single, secret cryptographic key.

Specifically, the key is used to encrypt plaintext - the data’s pre-encryption or post-decryption state - and decrypt ciphertext - the data’s post-encryption or pre-decryption state.

Symmetric encryption is one of the most widely used encryption techniques and also one of the oldest, dating back to the days of the Roman Empire. Caesar’s cipher, named after none other than Julius Caesar, who used it to encrypt his military correspondence, is a famous historical example of symmetric encryption in action.

The goal of symmetric encryption is to secure sensitive information. It’s used daily in many major industries, including defense, aerospace, banking, health care, and other industries in which securing a person’s, business’, or organization’s sensitive data is of the utmost importance.

Symmetric vs. Asymmetric Encryption: What's the Difference? (3)

Graphic: This is an illustration of the symmetric encryption process.

How does symmetric encryption work?

Symmetric encryption works by using either a stream cipher or block cipher to encrypt and decrypt data. A stream cipher converts plaintext into ciphertext one byte at a time, and a block cipher converts entire units, or blocks, of plaintext using a predetermined key length, such as 128, 192, or 256 bits.

Senders and recipients using symmetric encryption to transfer data to each other must know the secret key to, in the case of senders, encrypt the data they intend to share with recipients, and in the case of recipients, decrypt and read the encrypted data the senders share with them, as well as encrypt any necessary responses.

Here’s a simplified example of symmetric encryption: if Claire, the sender, wants to send Jacqueline, the recipient, a confidential document, Claire would use the secret key to encrypt the file and send it to Jacqueline, who would be unable to read its contents until she entered the same key that Claire just used to encrypt the file. Conversely, if Jacqueline makes changes to the document and wishes to share them with Claire, she’d use the same key to re-encrypt the file and send it back to Claire, who will use the same key to decrypt the file and access its contents, and the process repeats itself.

Note that this is just an example used to simplify how symmetric encryption works. Symmetric encryption may be carried out manually or automatically.

Symmetric encryption is not limited to the sharing of data between one sender and one recipient, however. Symmetrically encrypted information can be accessed by anyone – Claire, Jacqueline, their co-worker Frank, their boss, Jennifer, et al. – who knows the secret key. Therein lies the reason why concealing the shared cryptographic key from unauthorized parties is vital to the success of symmetric encryption and the integrity of symmetrically encrypted data.

Symmetric vs. Asymmetric Encryption: What's the Difference? (4)

Graphic: Examples of symmetric encryption include the Advanced Encryption Standard (AES) and TLS/SSL protocol.

What are some examples of symmetric encryption?

Popular examples of symmetric encryption include the:

  • Data Encryption Standard (DES)
  • Triple Data Encryption Standard (Triple DES)
  • Advanced Encryption Standard (AES)
  • International Data Encryption Algorithm (IDEA)
  • TLS/SSL protocol

AES encryption, which uses block ciphers of 128, 192, or 256 bits to encrypt and decrypt data, is one of the most well-known and effective symmetric encryption techniques in use today. It would take billions of years to crack, and that’s why it’s used to secure sensitive information in government, healthcare, banking, and other industries. It is more secure than DES, Triple DES, and IDEA.

DES encryption is now considered by the National Institute of Standards and Technology (NIST) to be a legacy symmetric encryption algorithm because it has long been ineffective at safeguarding sensitive information from brute-force attacks. In fact, the NIST has withdrawn the standard entirely, and its more secure big brother, Triple DES encryption, will have the same fate. Although still in use today, Triple DES encryption is being withdrawn and disallowed by the NIST in 2023 because of mounting security concerns.

IDEA encryption was developed as a replacement for DES in the 1990s, but AES was ultimately deemed more secure. The IDEA is now an open and free block-cipher algorithm, so anyone can use it, but it’s generally considered to be obsolete and ineffective at securing sensitive information today. AES encryption is the gold standard for both purposes.

Transport Layer Security (TLS), as well as its predecessor, Secure Sockets Layer (SSL), uses symmetric encryption. Basically, when a client accesses a server, unique symmetric keys, called session keys, are generated. These session keys are used to encrypt and decrypt the data shared between the client and the server in that specific client-server session at that specific point in time. A new client-server session would generate new, unique session keys.

TLS/SSL uses not only symmetric encryption but both symmetric and asymmetric encryption, to ensure the security of client-server sessions and the information exchanged within them.

Symmetric vs. Asymmetric Encryption: What's the Difference? (5)

Graphic: Advantages of symmetric encryption include security, speed, and industry adoption and acceptance.

What are some advantages of symmetric encryption?

Symmetric encryption is used today because it can encrypt and decrypt large amounts of data quickly, and it's easy to implement. It’s simple to use, and its AES iteration is one of the most secure forms of data encryption available.

Now, symmetric encryption has several advantages over its asymmetric counterpart, but we’ll talk about asymmetric encryption in this blog post a little later.

Some advantages of symmetric encryption include:

  • Security: symmetric encryption algorithms like AES take billions of years to crack using brute-force attacks.
  • Speed: symmetric encryption, because of its shorter key lengths and relative simplicity compared to asymmetric encryption, is much faster to execute.
  • Industry adoption and acceptance: symmetric encryption algorithms like AES have become the gold standard of data encryption because of their security and speed benefits, and as such, have enjoyed decades of industry adoption and acceptance.

Symmetric vs. Asymmetric Encryption: What's the Difference? (6)

Graphic: Disadvantages of symmetric encryption include the need to ensure the security of key distribution mechanisms.

What are some disadvantages of symmetric encryption?

By far the biggest disadvantage of symmetric encryption is its use of a single, secret cryptographic key to encrypt and decrypt information.

Why?

Well, if this secret key is stored in an insecure location on a computer, then hackers could gain access to it using software-based attacks, allowing them to decrypt the encrypted data and thereby defeating the entire purpose of symmetric encryption.

In addition, if one party or entity is encrypting at one location and a separate party or entity decrypting at a second, then the key will need to be transmitted, leaving it vulnerable to interception if the transmission channel is compromised.

That’s why it’s crucial to ensure the security of the encryption key at rest and in transit. Otherwise, you’re just asking for a litany of independent and state-sponsored cyberattackers to access your mission-critical, safety-critical, or legally protected data.

The only other disadvantage to using symmetric encryption is its security efficacy when compared to asymmetric encryption, which is generally considered to be more secure but also slower to execute than symmetric encryption.

But is asymmetric encryption more secure than symmetric encryption? Let’s find out.

Symmetric vs. Asymmetric Encryption: What's the Difference? (7)

Graphic: Asymmetric encryption uses public- and private-key pairs to encrypt and decrypt sensitive information.

What is asymmetric encryption?

Unlike symmetric encryption, which uses the same secret key to encrypt and decrypt sensitive information, asymmetric encryption, also known as public-key cryptography or public-key encryption, uses mathematically linked public- and private-key pairs to encrypt and decrypt senders’ and recipients’ sensitive data.

As with symmetric encryption, plaintext is still converted into ciphertext and vice versa during encryption and decryption, respectively. The main difference is that two unique key pairs are used to encrypt data asymmetrically.

How does asymmetric encryption work?

Here’s a simplified example of asymmetric encryption: if Claire, the sender, and Jacqueline, the recipient, want to continually send a confidential file back and forth to each other, Claire and Jacqueline will give their unique and respective public keys to each other. Claire will then use Jacqueline’s public key to encrypt the file, since it’s intended for Jacqueline only, and send the file to Jacqueline. Upon receipt of the file, Jacqueline will use her private key – keyword, “private,” meaning no one else other than Jacqueline knows it - to decrypt the file and access its contents. No one other than Jacqueline, not even Claire, can decrypt this file, because no one other than Jacqueline knows Jacqueline’s private key. The same process applies when Jacqueline wants to send the file back to Claire. Jacqueline ties it to Claire’s public key, and Claire uses her private key to decrypt the file.

Note that this is a simplification of asymmetric encryption. Like symmetric encryption, asymmetric encryption may be carried out manually or automatically.

Now, do you see how asymmetric encryption could be seen as more secure than symmetric encryption? While this is an interesting inquiry, it’s not the right question to ask, really, because, technically, whether symmetric or asymmetric encryption is more secure depends largely on key size and the security of the media that stores or transmits cryptographic keys.

One reason asymmetric encryption is often regarded as more secure than symmetric encryption is that asymmetric encryption, unlike its counterpart, does not require the exchange of the same encrypt-decrypt key between two or more parties. Yes, public keys are exchanged, but users sharing data in an asymmetric cryptosystem have unique public and private key pairs, and their public keys, because they’re used for encryption only, pose no risk of unauthorized decryption by hackers should they become known, because the hackers, assuming private keys are kept private, don’t know the users’ private keys and thus cannot decrypt the encrypted data.

Asymmetric encryption also allows for digital signature authentication, unlike symmetric encryption. Basically, this involves using private keys to digitally sign messages or files, and their corresponding public keys are used to confirm that these messages originated from the correct, verified sender.

Symmetric vs. Asymmetric Encryption: What's the Difference? (8)

Graphic: Examples of asymmetric encryption include Rivest Shamir Adleman (RSA) and the Digital Signature Algorithm (DSA).

What are some examples of asymmetric encryption?

Examples of asymmetric encryption include:

  • Rivest Shamir Adleman (RSA)
  • the Digital Signature Standard (DSS), which incorporates the Digital Signature Algorithm (DSA)
  • Elliptical Curve Cryptography (ECC)
  • the Diffie-Hellman exchange method
  • TLS/SSL protocol

Published in 1977, RSA is one of the oldest examples of asymmetric encryption. Developed by Ron Rivest, Adi Shamir, and Leonard Adleman, RSA encryption generates a public key by multiplying two large, random prime numbers together, and using these same prime numbers, generates a private key. From there, standard asymmetric encryption takes place: information is encrypted using the public key and decrypted using the private key.

The DSS, which incorporates the Digital Signature Algorithm (DSA), is the perfect example of asymmetric digital signature authentication. A sender’s private key is used to digitally sign a message or file, and the recipient uses the sender’s corresponding public key to confirm that the signature originated from the correct sender and not a suspicious or unauthorized source.

ECC is an RSA alternative that uses smaller key sizes and mathematical elliptic curves to execute asymmetric encryption. It’s frequently used to digitally sign cryptocurrency transactions; in fact, the popular cryptocurrency Bitcoin uses ECC – the Elliptic Curve Digital Signature Algorithm (ECDSA), to be exact - to digitally sign transactions and ensure that funds are spent by authorized users only. ECC is much faster than RSA in terms of key and signature generation, and many consider it the future of asymmetric encryption, mainly for web traffic and cryptocurrency but for other applications as well.

Diffie-Hellman, one of cryptography’s greatest breakthroughs, is a key exchange method that two parties who have never met can use to exchange public and private key pairs over public, insecure communication channels. Prior to Diffie-Hellman, two parties seeking to encrypt their communications between each other had to physically pre-exchange encryption keys so that both parties could decipher each other’s encrypted messages. Diffie-Hellman made it so that these keys could be securely exchanged over public communication channels, where third parties normally extract sensitive information and encryption keys.

TLS/SSL uses asymmetric encryption to establish a secure client-server session while the client and server are generating symmetric encryption keys. This is known as a TLS handshake. After the TLS handshake is complete, the client-server session keys are used to encrypt the information exchanged in that session.

Symmetric vs. Asymmetric Encryption: What's the Difference? (9)

Graphic: Advantages of asymmetric encryption include digital signature authentication and increased security due to the privacy of decryption keys.

What are some advantages of asymmetric encryption?

Advantages of using asymmetric encryption include:

  • Key distribution not necessary: securing key distribution channels has long been a headache in cryptography. Asymmetric encryption eliminates key distribution entirely. The needed public keys are exchanged through public-key servers, and the disclosure of public keys is not, at this time, detrimental to the security of encrypted messages, because they cannot be used to derive private keys.
  • Exchange of private keys not necessary: with asymmetric encryption, private keys should remain stored in a secure location and thus private to the entities using them. Basically, the keys needed to decrypt sensitive information are never, and should not ever be, exchanged over a potentially compromised communication channel, and that’s a major plus for the security and integrity of encrypted messages.
  • Digital signature/message authentication: with asymmetric encryption, senders can use their private keys to digitally sign and verify that a message or file originated from them and not an untrusted third party.

It may seem like there’s no going wrong with asymmetric encryption. I mean, why would you ever choose symmetric encryption if asymmetric encryption is so secure?

One word: speed.

Symmetric vs. Asymmetric Encryption: What's the Difference? (10)

Graphic: Disadvantages of asymmetric encryption include slowness of execution when compared to symmetric encryption.

What are some disadvantages of asymmetric encryption?

The main disadvantage of asymmetric encryption is that it’s slower than symmetric encryption because of its longer key lengths, not to mention that asymmetric encryption calculations tend to be much more complex than their symmetric counterparts.

Why? Because, in theory, public keys can be used to crack private keys – again, they’re mathematically linked – but asymmetric encryption uses extraordinarily long key lengths to make this virtually impossible, at least for now.

So, in a nutshell, symmetric encryption is faster than asymmetric encryption. Asymmetric encryption sacrifices speed for security, while symmetric encryption sacrifices security for speed.

Now, this is not to say that symmetric encryption is insecure; however, the very foundation of asymmetric encryption eliminates several information security risks that still exist within poorly managed symmetric encryption cryptosystems.

Symmetric vs. Asymmetric Encryption: What's the Difference? (11)

Graphic: Let's summarize the "key" differences between symmetric and asymmetric encryption.

Conclusion: summary of key differences

The key differences between symmetric and asymmetric encryption are speed and security preferences. Generally speaking, symmetric encryption is faster and simpler but is often viewed as less secure than asymmetric encryption. But as we've discussed, encryption really boils down to two things: key size and the security of the media storing encryption keys.

Symmetric encryption is much faster to execute because of its shorter key lengths. Asymmetric encryption has a tendency to bog down networks because of its longer key lengths and complex algorithms. These are the tradeoffs worth considering when deciding which type of encryption to employ.

At Trenton Systems, we offer data encryption solutions in our high-performance servers and workstations in the form of AES-compliant, Opal-compliant, and FIPS-140-2-compliant self-encrypting drives (SEDs).

Pair this with our technology partner FUTURA Cyber's Crypto Management Platform (CMP), and you've crafted a secure, well-managed computer capable of withstanding common attacks on your sensitive data.

For more information about how we ensure the integrity of your data using data encryption, reach out to us today.

Symmetric vs. Asymmetric Encryption: What's the Difference? (12)

Symmetric vs. Asymmetric Encryption: What's the Difference? (2024)

FAQs

Symmetric vs. Asymmetric Encryption: What's the Difference? ›

Symmetric encryption uses the same key for encryption and decryption, while asymmetric encryption uses two different keys, a public key for encryption and a private key for decryption. Symmetric encryption is faster and more efficient, while asymmetric encryption is more secure for certain applications.

What is the difference between symmetric and asymmetric encryption? ›

Asymmetric and symmetric encryption are two primary techniques used to secure data. Symmetric encryption uses the same key for both encryption and decryption, while asymmetric encryption uses a pair of keys: a public key for encryption and a private key for decryption.

What is the difference between asymmetrical and symmetrical? ›

If you know that symmetrical means that both sides of something are identical, then it should be easy to learn that asymmetrical means the opposite: the two sides are different in some way. Asymmetrical things are irregular and crooked, and don't match up perfectly when folded in half.

What is a real life example of asymmetric encryption? ›

Real-Life Example: WhatsApp

Let's talk about WhatsApp, a popular messaging app used by lots of people. WhatsApp uses asymmetric encryption to keep your messages private and safe.

What are the examples of symmetric and asymmetric algorithms? ›

The symmetric encryption algorithms include AES, DES, 3DES, and RC4. The algorithms that use asymmetric encryption are RSA and Diffie-Hellman. Symmetric encryption algorithms are generally used to send large amounts of data.

What is the biggest problem with symmetric key encryption? ›

Accordingly, the biggest challenge in symmetric encryption is the secure distribution of the key. Since the same key is used by all parties involved, it must be shared… which presents its own problems in terms of securing keys.

What are the benefits of using asymmetric encryption? ›

Increased data security is the primary benefit of asymmetric cryptography. It is the most secure encryption process because users are never required to reveal or share their private keys, decreasing the chances of a cybercriminal discovering a user's private key during transmission.

What are 3 examples of asymmetrical? ›

What are examples of asymmetrical shapes? There are many shapes in nature that are asymmetrical, such as rocks, leaves, pine cones, and plants. Letters and numbers can be asymmetrical. Any shape in which the two sides do not match up exactly is asymmetrical.

Is asymmetry better than symmetry? ›

Asymmetry creates more complex relationships between elements, and so it tends to be more interesting than symmetry. Because it's more interesting, asymmetry can be used to draw attention. Space around asymmetrical forms is more active.

What is asymmetric and symmetric communication? ›

Symmetric communication represents the form of communication between experts or equals, while asymmetric communication takes place between professionals and laypeople.

What is an example of symmetric encryption? ›

Some examples of symmetric encryption algorithms include: AES (Advanced Encryption Standard) DES (Data Encryption Standard) IDEA (International Data Encryption Algorithm)

When would you use symmetric encryption? ›

Some of the most common use cases for symmetric cryptography include: Banking: Encrypting credit card information or other personally identifiable information (PII) required for transactions. Data storage: Encrypting data stored on a device when that data is not being transferred.

What is the most used asymmetric encryption? ›

RSA (Rivest Shamir Adleman) — RSA is considered one of the most secure (and commonly used) asymmetric key encryption algorithms. It's virtually uncrackable using modern computers.

Which is better, asymmetric or symmetric encryption? ›

Symmetric encryption is faster and easier to use than asymmetric encryption, but it is less secure. If the key is compromised, the data can be easily decrypted. Asymmetric encryption, on the other hand, is more secure because even if one key is compromised, the data remains safe.

What is a simple math example of asymmetric encryption? ›

A simple pair of functions that undo each other might be “multiply by two” and “divide by two”. If you wanted to encrypt a message represented by the number 6, you would multiply it by two and get 12. To decrypt that message you would take the encrypted version - 12 - and divide by two to get back to 6.

Which is the largest disadvantage of symmetric encryption? ›

By far the biggest disadvantage of symmetric encryption is its use of a single, secret cryptographic key to encrypt and decrypt information.

What is the difference between symmetric and asymmetric encryption quizlet? ›

Asymmetric encryption is also known as public-key encryption. It uses two different keys to encrypt messages: the public key and the private key. Symmetric encryption is different because it uses only one key to encrypt and decrypt messages.

What is the difference between RSA and DES? ›

DES and AES are symmetric. That is, you use the same key to encrypt the data and decrypt the data. RSA is asymmetric—that is, you use one key to encrypt the data, and a separate key to decrypt that data. Knowing the key used to encrypt the data is of no help in decrypting the data.

What is the difference between symmetric and antisymmetric? ›

A relation, R , is symmetric if whenever it includes the pair, ( x , y ) , it also includes ( y , x ) . Alternatively, it is antisymmetric if R , including ( x , y ) , means it does not include ( y , x ) , unless x and y are equal.

What is an example of asymmetrical? ›

What are examples of asymmetrical shapes? There are many shapes in nature that are asymmetrical, such as rocks, leaves, pine cones, and plants. Letters and numbers can be asymmetrical. Any shape in which the two sides do not match up exactly is asymmetrical.

Top Articles
3 independent proofs that quantum fields carry energy
TCS’ 70% employees return to office after attendance-linked variable pay policy: Report | Mint
Pollen Count Los Altos
Dragon Age Inquisition War Table Operations and Missions Guide
Cottonwood Vet Ottawa Ks
Atvs For Sale By Owner Craigslist
FFXIV Immortal Flames Hunting Log Guide
oklahoma city for sale "new tulsa" - craigslist
Watch Mashle 2nd Season Anime Free on Gogoanime
Jennette Mccurdy And Joe Tmz Photos
Mylife Cvs Login
Publix 147 Coral Way
South Ms Farm Trader
Culos Grandes Ricos
Marion County Wv Tax Maps
O'reilly's Auto Parts Closest To My Location
ᐅ Bosch Aero Twin A 863 S Scheibenwischer
Uc Santa Cruz Events
Mzinchaleft
Dirt Removal in Burnet, TX ~ Instant Upfront Pricing
Heart and Vascular Clinic in Monticello - North Memorial Health
Between Friends Comic Strip Today
Qhc Learning
Doki The Banker
Speedstepper
Section 408 Allegiant Stadium
Darktide Terrifying Barrage
5 Star Rated Nail Salons Near Me
Account Now Login In
3473372961
Delta Rastrear Vuelo
Selfservice Bright Lending
Goodwill Thrift Store & Donation Center Marietta Photos
John F Slater Funeral Home Brentwood
Stafford Rotoworld
Merkantilismus – Staatslexikon
Hireright Applicant Center Login
Worcester County Circuit Court
התחבר/י או הירשם/הירשמי כדי לראות.
Owa Hilton Email
3 bis 4 Saison-Schlafsack - hier online kaufen bei Outwell
FedEx Authorized ShipCenter - Edouard Pack And Ship at Cape Coral, FL - 2301 Del Prado Blvd Ste 690 33990
56X40X25Cm
Wzzm Weather Forecast
Germany’s intensely private and immensely wealthy Reimann family
Diccionario De Los Sueños Misabueso
Twizzlers Strawberry - 6 x 70 gram | bol
De Donde Es El Area +63
sin city jili
라이키 유출
Latest Posts
Article information

Author: Rev. Leonie Wyman

Last Updated:

Views: 5618

Rating: 4.9 / 5 (79 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Rev. Leonie Wyman

Birthday: 1993-07-01

Address: Suite 763 6272 Lang Bypass, New Xochitlport, VT 72704-3308

Phone: +22014484519944

Job: Banking Officer

Hobby: Sailing, Gaming, Basketball, Calligraphy, Mycology, Astronomy, Juggling

Introduction: My name is Rev. Leonie Wyman, I am a colorful, tasty, splendid, fair, witty, gorgeous, splendid person who loves writing and wants to share my knowledge and understanding with you.