Frequency Polygons (2024)

Frequency Polygons

Author(s)

David M. Lane

Prerequisites

Histograms

Learning Objectives

  1. Create and interpret frequency polygons
  2. Create and interpret cumulative frequency polygons
  3. Create and interpret overlaid frequency polygons

Frequency polygons are a graphical device for understanding the shapes of distributions. They serve the same purpose as histograms, but are especially helpful for comparing sets of data. Frequency polygons are also a good choice for displaying cumulative frequency distributions.

To create a frequency polygon, start just as for histograms, by choosing a class interval. Then draw an X-axis representing the values of the scores in your data. Mark the middle of each class interval with a tick mark, and label it with the middle value represented by the class. Draw the Y-axis to indicate the frequency of each class. Place a point in the middle of each class interval at the height corresponding to its frequency. Finally, connect the points. You should include one class interval below the lowest value in your data and one above the highest value. The graph will then touch the X-axis on both sides.

A frequency polygon for 642 psychology test scores shown in Figure 1 was constructed from the frequency table shown in Table 1.

Table 1. Frequency Distribution of Psychology Test Scores.

Lower LimitUpper LimitCountCumulative Count
29.5 39.5 0 0
39.549.533
49.559.51013
59.569.55366
69.579.5107173
79.589.5147320
89.599.5130450
99.5109.578528
109.5119.559587
119.5129.536623
129.5139.511634
139.5149.56640
149.5159.51641
159.5169.51642
169.5 179.5 0 642

The first label on the X-axis is 35. This represents an interval extending from 29.5 to 39.5. Since the lowest test score is 46, this interval has a frequency of 0. The point labeled 45 represents the interval from 39.5 to 49.5. There are three scores in this interval. There are 147 scores in the interval that surrounds 85.

You can easily discern the shape of the distribution from Figure 1. Most of the scores are between 65 and 115. It is clear that the distribution is not symmetric inasmuch as good scores (to the right) trail off more gradually than poor scores (to the left). In the terminology of Chapter 3 (where we will study shapes of distributions more systematically), the distribution is skewed.

Frequency Polygons (1)

Figure 1. Frequency polygon for the psychology test scores.

A cumulative frequency polygon for the same test scores is shown in Figure 2. The graph is the same as before except that the Y value for each point is the number of students in the corresponding class interval plus all numbers in lower intervals. For example, there are no scores in the interval labeled "35," three in the interval "45," and 10 in the interval "55." Therefore, the Y value corresponding to "55" is 13. Since 642 students took the test, the cumulative frequency for the last interval is 642.

Frequency Polygons (2)

Figure 2. Cumulative frequency polygon for the psychology test scores.

Frequency polygons are useful for comparing distributions. This is achieved by overlaying the frequency polygons drawn for different data sets. Figure 3 provides an example. The data come from a task in which the goal is to move a computer cursor to a target on the screen as fast as possible. On 20 of the trials, the target was a small rectangle; on the other 20, the target was a large rectangle. Time to reach the target was recorded on each trial. The two distributions (one for each target) are plotted together in Figure 3. The figure shows that, although there is some overlap in times, it generally took longer to move the cursor to the small target than to the large one.

Frequency Polygons (3)

Figure 3. Overlaid frequency polygons.

It is also possible to plot two cumulative frequency distributions in the same graph. This is illustrated in Figure 4 using the same data from the cursor task. The difference in distributions for the two targets is again evident.

Frequency Polygons (4)

Figure 4. Overlaid cumulative frequency polygons.

Note that the graphs on this page were not created in R. However, the R code shown here produces very similar graphs. Make sure to put the data files in the default directory.

R code written by David Scott

Data files for Figures 1 and 2
Data files for Figures 3 and 4

# Figure 1
tests = read.csv(file = 'psych_scores.csv')
bk = seq(40,170,10) # bin count interval
tk = seq(35,175,10) # FP "bins" edges
nuk = c( 0, hist( (tests[[1]]), bk, plot=F )$counts, 0 )
main="Frequency polygon for the psychology test scores"
plot(tk,nuk,type="l",col=4,xlab="Test Score",ylab="Frequency",lwd=2,main=main,ylim=c(0,160))
points(tk,nuk,pch=16,col=4,cex=1.5); abline(h=seq(0,160,20),lwd=.5)

# Figure 2
tests = read.csv(file = 'psych_scores.csv')
cum.nuk = c*msum(nuk)
main="Cumulative frequency polygon for the psychology test scores"
plot(tk,cum.nuk,type="l",col=4,xlab="Test Score",ylab="Cumulative Frequency", lwd=2,main=main,ylim=c(0,700))
points(tk,cum.nuk,pch=16,col=4,cex=1.5); abline(h=seq(0,700,100),lwd=.5)

# Figure 3
target = read.csv(file = 'target_size.csv')
bk = seq(400,1100,100) # bin count interval
tk = seq(350,1150,100) # FP "bins" edges
dat = target[[2]] # 1st 20 small 2nd 20 large
nuk1 = c( 0, hist( dat[ 1:20], bk, plot=F )$counts, 0 )
nuk2 = c( 0, hist( dat[21:40], bk, plot=F )$counts, 0 )
main="Overlaid Frequency polygons"
plot(tk,nuk1,type="l",col=2,xlab="Time (msec)",ylab="Frequency",lwd=2,main=main,ylim=c(0,10))
points(tk,nuk1,pch=16,col=2,cex=2); abline(h=seq(0,10,2.5),lwd=.5,lty=2)
lines(tk,nuk2,col=4); points(tk,nuk2,pch=16,cex=2,col=4)
text(1000,4,"small target",cex=1.5)
text(720,8,"large target",cex=1.5)

# Figure 4
target = read.csv(file = 'target_size.csv')
cum.nuk1 = c*msum(nuk1)
cum.nuk2 = c*msum(nuk2)
main="Overlaid cumulative frequency polygons"
plot(tk,cum.nuk1,type="l",col=2,xlab="Time (msec)", ylab="Cumulative Frequency", lwd=2,main=main,ylim=c(0,20))
points(tk,cum.nuk1,pch=16,col=2,cex=2); abline(h=seq(0,20,5))
lines(tk,cum.nuk2,col=4,lwd=2); points(tk,cum.nuk2,pch=16,col=4,cex=2)
text(850,12,"small target",cex=1.5)
text(450,18,"large target",cex=1.5)

Please answer the questions:

Frequency Polygons (5)feedback

Frequency Polygons (2024)
Top Articles
Restricted Stock Units (RSUs) - Benefits and Downfalls
Poverty in Africa: Real-Life Consequences & Sustainable Solutions
Red wine, berries, dark chocolate and tea: A recipe to reduce dementia risk
Oriellys Bad Axe
Sdn Md 2023-2024
El Puerto Harrisonville Mo Menu
Type of Funeral Homes
Funeral Homes in Grand Forks, North Dakota
Washington Food Handlers Card Test Answers
Blak Stellenanzeigen
Https E22 Ultipro Com Login Aspx
What is international trade and explain its types?
Don Misael Tamales Menu
Siemens söker Business Controller Siemens i Solna | LinkedIn
Hodgkins Il Ups Delay 2022
YouTube Sperren mit Proxy umgehen - So geht's 2024 – PrivacyTutor
Occ Roadhouse Menu Prices
Fox News 10 Mobile Al
Infinite Campus Farmingdale
Anderson Preparatory Academy Skyward
What Do Noom Coins Get Me
Katmoie
Adriana Chechik Reveals Extent Of Heartbreaking Injuries In Return Stream - SVG
683 Job Calls
Craiglist Quad Cities
E8 Markets Review - Forex Prop Reviews
Dan Pfeiffer Message Box
Is Chanel West Coast Pregnant Due Date
Tuscora Park in New Philadelphia | Ohio - on FamilyDaysOut.com
Cs2 Feels Like 60Hz
Ez Rx Of Boynton Beach Llc D Hudson Ohio
T&G Pallet Liquidation
Kapilina Beach Homes Resident Portal
Xre 00251
Back Pages Chattanooga
Psu Rivals
Habbowidget
Hyundai Scottsdale
Craislist Vt
Haunted Mansion (2023) | Rotten Tomatoes
Al Sandling Golf Carts
Guadalajara Taqueria Cisco Menu
Biolovematch
3054934776
Spartan 365 - Email and Microsoft Office
My Scheduler Hca Cloud
Urgent Care Near Flamingo Crossings Village
Youravon Comcom
Fifty Shades Freed Putlocker
Warlock Solasta
Ryan Bingham and Hassie Harrison: All About the 'Yellowstone' Costars’ Relationship
Latest Posts
Article information

Author: Edwin Metz

Last Updated:

Views: 6000

Rating: 4.8 / 5 (58 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Edwin Metz

Birthday: 1997-04-16

Address: 51593 Leanne Light, Kuphalmouth, DE 50012-5183

Phone: +639107620957

Job: Corporate Banking Technician

Hobby: Reading, scrapbook, role-playing games, Fishing, Fishing, Scuba diving, Beekeeping

Introduction: My name is Edwin Metz, I am a fair, energetic, helpful, brave, outstanding, nice, helpful person who loves writing and wants to share my knowledge and understanding with you.