Essential Oils as Repellents against Arthropods (2024)

1. Braack L., Gouveia De Almeida A. P., Cornel A. J., Swanepoel R., De Jager C. Mosquito-borne arboviruses of African origin: Review of key viruses and vectors. Parasites & Vectors. 2018;11(1) [PMC free article] [PubMed] [Google Scholar]

2. Dias C. N., Moraes D. F. C. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: review. Parasitology Research. 2014;113:565–592. doi:10.1007/s00436-013-3687-6. [PubMed] [CrossRef] [Google Scholar]

3. Govindarajan M., Rajeswary M., Benelli G. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors. Ecotoxicology and Environmental Safety. 2016;129:85–90. doi:10.1016/j.ecoenv.2016.03.007. [PubMed] [CrossRef] [Google Scholar]

4. Meneses R., Ocazionez R. E., Martínez J. R., Stashenko E. E. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro. Annals of Clinical Microbiology and Antimicrobials. 2009;8, article no. 8 doi:10.1186/1476-0711-8-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Gould E., Pettersson J., Higgs S., Charrel R., de Lamballerie X. Emerging arboviruses: Why today? One Health. 2017;4:1–13. doi:10.1016/j.onehlt.2017.06.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Conti B., Leonardi M., Pistelli L., Profeti R., Ouerghemmi I., Benelli G. Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L. (Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector. Parasitology Research. 2013;112(3):991–999. doi:10.1007/s00436-012-3221-2. [PubMed] [CrossRef] [Google Scholar]

7. Pohlit A. M., Rezende A. R., Lopes Baldin E. L., Lopes N. P., de Andrade Neto V. F. Plant extracts, isolated phytochemicals, and plant-derived agents which are lethal to arthropod vectors of human tropical diseases-a review. Planta Medica. 2011;77:618–630. doi:10.1055/s-0030-1270949. [PubMed] [CrossRef] [Google Scholar]

8. Pohlit A. M., Lopes N. P., Gama R. A., Tadei W. P., De Andrade Neto V. F. Patent literature on mosquito repellent inventions which contain plant essential oils - a review. Planta Medica. 2011;77(6):598–617. doi:10.1055/s-0030-1270723. [PubMed] [CrossRef] [Google Scholar]

9. Ahronowitz I., Ochoa M. T. Recognizing and preventing arbovirus infections. Cutis; Cutaneous Medicine for the Practitioner. 2017;100(5):294–330. [Google Scholar]

10. Diaz J. H. Chemical and plant-based insect repellents: Efficacy, safety, and toxicity. Wilderness & Environmental Medicine. 2016;27(1):153–163. doi:10.1016/j.wem.2015.11.007. [PubMed] [CrossRef] [Google Scholar]

11. Govindarajan M., Benelli G. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicology and Environmental Safety. 2016;133:395–402. doi:10.1016/j.ecoenv.2016.07.035. [PubMed] [CrossRef] [Google Scholar]

12. Tyagi V. Laboratory evaluation of certain essential oils for their lavicidal activity against Aedes albopictus, vector of dengue and Chikungunya. Global Journal of Zoology. 2016;1(1):003–006. doi:10.17352/gjz.000002. [CrossRef] [Google Scholar]

13. Stanaway J. D., Shepard D. S., Undurraga E. A., et al. The global burden of dengue: an analysis from the global burden of disease study 2013. The Lancet Infectious Diseases. 2016;16(6):712–723. [PMC free article] [PubMed] [Google Scholar]

14. Weetman D., Kamgang B., Badolo A., et al. Aedes mosquitoes and Aedes-borne arboviruses in Africa: Current and future threats. International Journal of Environmental Research and Public Health. 2018;15(2) [PMC free article] [PubMed] [Google Scholar]

15. Mysterud A., Stigum V. M., Seland I. V. Tick abundance, pathogen prevalence, and disease incidence in two contrasting regions at the northern distribution range of Europe. Parasites Vectors. 2018;11(1) [PMC free article] [PubMed] [Google Scholar]

16. Swale D. R., Sun B., Tong F., Bloomquist J. R. Neurotoxicity and mode of action of N, N-diethyl-meta-toluamide (DEET) PLoS ONE. 2014;9(8) [PMC free article] [PubMed] [Google Scholar]

17. Khanikor B., Parida P., Yadav R. N. S., Bora D. Comparative mode of action of some terpene compounds against octopamine receptor and acetyl cholinesterase of mosquito and human system by the help of hom*ology modeling and docking studies. Journal of Applied Pharmaceutical Science. 2013;3(2):6–12. doi:10.7324/JAPS.2013.30202. [CrossRef] [Google Scholar]

18. Nerio L. S., Olivero-Verbel J., Stashenko E. Repellent activity of essential oils: a review. Bioresource Technology. 2010;101(1):372–378. doi:10.1016/j.biortech.2009.07.048. [PubMed] [CrossRef] [Google Scholar]

19. Tong F., Bloomquist J. R. Plant essential oils affect the toxicities of carbaryl and permethrin against aedes aegypti (Diptera: Culicidae) Journal of Medical Entomology. 2013;50(4):826–832. doi:10.1603/ME13002. [PubMed] [CrossRef] [Google Scholar]

20. Maia M. F., Moore S. J. Plant-based insect repellents: a review of their efficacy, development and testing. Malaria Journal. 2011;10(1, article S11) doi:10.1186/1475-2875-10-S1-S11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Muturi E. J., Ramirez J. L., Doll K. M., Bowman M. J. Combined toxicity of three essential oils against Aedes aegypti (Diptera: Culicidae) larvae. Journal of Medical Entomology. 2017;54(6):1684–1691. doi:10.1093/jme/tjx168. [PubMed] [CrossRef] [Google Scholar]

22. Sharifi-Rad J., Sureda A., Tenore G. C., et al. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules. 2017;22(1, article no. 70) doi:10.3390/molecules22010070. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Lupi E., Hatz C., Schlagenhauf P. The efficacy of repellents against Aedes, Anopheles, Culex and Ixodes spp. - A literature review. Travel Medicine and Infectious Disease. 2013;11(6):374–411. doi:10.1016/j.tmaid.2013.10.005. [PubMed] [CrossRef] [Google Scholar]

24. Kalaivani K., Senthil-Nathan S., Murugesan A. G. Biological activity of selected Lamiaceae and Zingiberaceae plant essential oils against the dengue vector Aedes aegypti L. (Diptera: Culicidae) Parasitology Research. 2012;110(3):1261–1268. doi:10.1007/s00436-011-2623-x. [PubMed] [CrossRef] [Google Scholar]

25. Chellappandian M., Vasantha-Srinivasan P., Senthil-Nathan S., et al. Botanical essential oils and uses as mosquitocides and repellents against dengue. Environment International. 2018;113:214–230. doi:10.1016/j.envint.2017.12.038. [PubMed] [CrossRef] [Google Scholar]

26. Mihajilov-Krstev T., Jovanović B., Jović J., et al. Antimicrobial, antioxidative, and insect repellent effects of Artemisia absinthium essential oil. Planta Medica. 2014;80(18):1698–1705. doi:10.1055/s-0034-1383182. [PubMed] [CrossRef] [Google Scholar]

27. Kröber T., Kessler S., Frei J., Bourquin M., Guerin P. M. An in vitro assay for testing mosquito repellents employing a warm body and carbon dioxide as a behavioral activator. Journal of the American Mosquito Control Association. 2010;26(4):381–386. doi:10.2987/10-6044.1. [PubMed] [CrossRef] [Google Scholar]

28. Taylor R. W., Romaine I. M., Liu C., et al. Structure-activity relationship of a broad-spectrum insect odorant receptor agonist. ACS Chemical Biology. 2012;7(10):1647–1652. doi:10.1021/cb300331z. [PubMed] [CrossRef] [Google Scholar]

29. Bohbot J. D., Dickens J. C. Insect repellents: Modulators of mosquito odorant receptor activity. PLoS ONE. 2010;5(8) [PMC free article] [PubMed] [Google Scholar]

30. Tsitoura P., Koussis K., Iatrou K. Inhibition of Anopheles gambiae odorant receptor function by mosquito repellents. The Journal of Biological Chemistry. 2015;290(12):7961–7972. doi:10.1074/jbc.M114.632299. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Dickens J. C., Bohbot J. D. Mini review: Mode of action of mosquito repellents. Pesticide Biochemistry and Physiology. 2013;106(3):149–155. doi:10.1016/j.pestbp.2013.02.006. [CrossRef] [Google Scholar]

32. Sathantriphop S., Achee N. L., Sanguanpong U., Chareonviriyaphap T. The effects of plant essential oils on escape response and mortality rate of Aedes aegypti and Anopheles minimus. Journal of Vector Ecology. 2015;40(2):318–326. doi:10.1111/jvec.12170. [PubMed] [CrossRef] [Google Scholar]

33. Sritabutra D., Soonwera M. Repellent activity of herbal essential oils against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.) Asian Pacific Journal of Tropical Disease. 2013;3(4):271–276. doi:10.1016/S2222-1808(13)60069-9. [CrossRef] [Google Scholar]

34. Soleimani-Ahmadi M., Abtahi S. M., Madani A., et al. Phytochemical profile and mosquito larvicidal activity of the essential oil from aerial parts of Satureja bachtiarica Bunge against malaria and lymphatic filariasis vectors. Journal of Essential Oil Bearing Plants. 2017;20(2):328–336. doi:10.1080/0972060X.2017.1305919. [CrossRef] [Google Scholar]

35. Tak J. H., Jovel E., Isman M. B. Comparative and synergistic activity of Rosmarinus officinalis L. essential oil constituents against the larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae) Pest Management Science. 2016;72(3):474–480. doi:10.1002/ps.4010. [PubMed] [CrossRef] [Google Scholar]

36. Harris R. Synergism in the essential oil world. International Journal of Aromatherapy. 2002;12(4):179–186. doi:10.1016/S0962-4562(02)00083-8. [CrossRef] [Google Scholar]

37. Mulyaningsih S., Sporer F., Zimmermann S., Reichling J., Wink M. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine. 2010;17(13):1061–1066. doi:10.1016/j.phymed.2010.06.018. [PubMed] [CrossRef] [Google Scholar]

38. György É. Study of the antimicrobial activity and synergistic effect of some plant extracts and essential oils. Revista Română de Medicină de Laborator. 2010;18(1):49–56. [Google Scholar]

39. Noosidum A., Chareonviriyaphap T., Chandrapatya A. Synergistic repellent and irritant effect of combined essential oils on Aedes aegypti (L.) mosquitoes. Journal of Vector Ecology. 2014;39(2):298–305. doi:10.1111/jvec.12104. [PubMed] [CrossRef] [Google Scholar]

40. Cheng S. S., Chua M. T., Chang E. H., Huang C. G., Chen W. J., Chang S. T. Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresource Technology. 2009;100(1):465–470. doi:10.1016/j.biortech.2007.11.060. [PubMed] [CrossRef] [Google Scholar]

41. Rehman J. U., Ali A., Khan I. A. Plant based products: Use and development as repellents against mosquitoes: A review. Fitoterapia. 2014;95:65–74. doi:10.1016/j.fitote.2014.03.002. [PubMed] [CrossRef] [Google Scholar]

42. Tabanca N., Ali Z., Bernier U. R., et al. Bioassay-guided isolation and identification of Aedes aegypti larvicidal and biting deterrent compounds from Veratrum lobelianum. Open Chemistry. 2018;16(1):324–332. doi:10.1515/chem-2018-0030. [CrossRef] [Google Scholar]

43. Thomas A., Mazigo H. D., Manjurano A., Morona D., Kweka E. J. Evaluation of active ingredients and larvicidal activity of clove and cinnamon essential oils against Anopheles gambiae (sensu lato) Parasites & Vectors. 2017;10(1) [PMC free article] [PubMed] [Google Scholar]

44. Tisgratog R., Sanguanpong U., Grieco J. P., Ngoen-Kluan R., Chareonviriyaphap T. Plants traditionally used as mosquito repellents and the implication for their use in vector control. Acta Tropica. 2016;157:136–144. doi:10.1016/j.actatropica.2016.01.024. [PubMed] [CrossRef] [Google Scholar]

45. Islam J., Zaman K., Duarah S., Raju P. S., Chattopadhyay P. Mosquito repellents: An insight into the chronological perspectives and novel discoveries. Acta Tropica. 2017;167:216–230. doi:10.1016/j.actatropica.2016.12.031. [PubMed] [CrossRef] [Google Scholar]

46. Gnankiné O., Bassolé I. L. H. N. Essential oils as an alternative to pyrethroids’ resistance against anopheles species complex giles (Diptera: Culicidae) Molecules. 2017;22(10) [PMC free article] [PubMed] [Google Scholar]

47. Prabakaran P., Sivasubramanian C., Veeramani R., Prabhu S. Review study on larvicidal and mosquito repellent activity of volatile oils isolated from medicinal plants. International Journal of Environment, Agriculture and Biotechnology. 2017;2(6):3132–3138. doi:10.22161/ijeab/2.6.46. [CrossRef] [Google Scholar]

48. Ríos N., Stashenko E. E., Duque J. E. Evaluation of the insecticidal activity of essential oils and their mixtures against Aedes aegypti (Diptera: Culicidae) Revista Brasileira de Entomologia. 2017;61(4):307–311. doi:10.1016/j.rbe.2017.08.005. [CrossRef] [Google Scholar]

49. Oyedele A. O., Gbolade A. A., Sosan M. B., Adewoyin F. B., Soyelu O. L., Orafidiya O. O. Formulation of an effective mosquito-repellent topical product from lemongrass oil. Phytomedicine. 2002;9(3):259–262. doi:10.1078/0944-7113-00120. [PubMed] [CrossRef] [Google Scholar]

50. Misni N., Nor Z. M., Ahmad R. Repellent effect of microencapsulated essential oil in lotion formulation against mosquito bites. Journal of Vector Borne Diseases. 2017;54(1):44–53. [PubMed] [Google Scholar]

51. Wu H., Fu C. C., Yu D. D., Feng J. T., Zhang X., Ma Z. Q. Repellent activity screening of 11 kinds of essential oils against Aedes albopictus Skuse: Microcapsule preparation of Herba Schizonepetae oil and repellent bioassay on hand skin. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2013;107(8):471–479. doi:10.1093/trstmh/trt045. [PubMed] [CrossRef] [Google Scholar]

52. Maji T. K., Hussain M. R. Microencapsulation of zanthoxylum limonella oil (ZLO) in genipin crosslinked chitosan-gelatin complex for mosquito repellent application. Journal of Applied Polymer Science. 2009;111(2):779–785. [Google Scholar]

53. Chung S. K., Seo J. Y., Lim J. H., Park H. H., Yea M. J., Park H. J. Microencapsulation of essential oil for insect repellent in food packaging system. Journal of Food Science. 2013;78(5):E709–E714. doi:10.1111/1750-3841.12111. [PubMed] [CrossRef] [Google Scholar]

54. Songkro S., Jenboonlap M., Boonprasertpon M., Maneenuan D., Bouking K., Kaewnopparat N. Effects of glucam P-20, vanillin, and fixolide on mosquito repellency of citronella oil lotions. Journal of Medical Entomology. 2012;49(3):672–677. doi:10.1603/ME11141. [PubMed] [CrossRef] [Google Scholar]

55. Campolo O., Cherif A., Ricupero M., et al. Author Correction: Citrus peel essential oil nanoformulations to control the tomato borer, Tuta absoluta: chemical properties and biological activity. Scientific Reports. 2018;8(1) doi:10.1038/s41598-018-28931-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Chattopadhyay P., Dhiman S., Borah S., Rabha B., Chaurasia A. K., Veer V. Essential oil based polymeric patch development and evaluating its repellent activity against mosquitoes. Acta Tropica. 2015;147:45–53. doi:10.1016/j.actatropica.2015.03.027. [PubMed] [CrossRef] [Google Scholar]

57. Montefuscoli A. R., Werdin González J. O., Palma S. D., Ferrero A. A., Fernández Band B. Design and development of aqueous nanoformulations for mosquito control. Parasitology Research. 2014;113(2):793–800. doi:10.1007/s00436-013-3710-y. [PubMed] [CrossRef] [Google Scholar]

58. Nuchuchua O., Sakulku U., Uawongyart N., Puttipipatkhachorn S., Soottitantawat A., Ruktanonchai U. In vitro characterization and mosquito (Aedes aegypti) repellent activity of essential-oils-loaded nanoemulsions. AAPS PharmSciTech. 2009;10(4):1234–1242. doi:10.1208/s12249-009-9323-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Benelli G., Caselli A., Canale A. Nanoparticles for mosquito control: Challenges and constraints. Journal of King Saud University - Science. 2017;29(4):424–435. doi:10.1016/j.jksus.2016.08.006. [CrossRef] [Google Scholar]

60. Valentini X., Absil L., Laurent G., et al. Toxicity of TiO2 nanoparticles on the NRK52E renal cell line. Molecular & Cellular Toxicology. 2017;13(4):419–431. doi:10.1007/s13273-017-0046-1. [CrossRef] [Google Scholar]

61. Benelli G. Mode of action of nanoparticles against insects. Environmental Science and Pollution Research International. 2018;25(13):12329–12341. [PubMed] [Google Scholar]

62. Murugan K., Dinesh D., Paulpandi M., et al. Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae) Parasitology Research. 2015;114(12):4349–4361. doi:10.1007/s00436-015-4676-8. [PubMed] [CrossRef] [Google Scholar]

63. Verma A., Mehata M. S. Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. Journal of Radiation Research and Applied Sciences. 2016;9(1):109–115. doi:10.1016/j.jrras.2015.11.001. [CrossRef] [Google Scholar]

64. Govindarajan M., Rajeswary M., Veerakumar K., Muthukumaran U., Hoti S. L., Benelli G. Green synthesis and characterization of silver nanoparticles fabricated using Anisomeles indica: Mosquitocidal potential against malaria, dengue and Japanese encephalitis vectors. Experimental Parasitology. 2016;161:40–47. doi:10.1016/j.exppara.2015.12.011. [PubMed] [CrossRef] [Google Scholar]

65. Govindarajan M., Benelli G. Facile biosynthesis of silver nanoparticles using Barleria cristata: mosquitocidal potential and biotoxicity on three non-target aquatic organisms. Parasitology Research. 2016;115(3):925–935. doi:10.1007/s00436-015-4817-0. [PubMed] [CrossRef] [Google Scholar]

66. Govindarajan M., Benelli G. A facile one-pot synthesis of eco-friendly nanoparticles using Carissa carandas: Ovicidal and larvicidal potential on malaria, dengue and filariasis mosquito vectors. Journal of Cluster Science. 2017;28(1):15–36. doi:10.1007/s10876-016-1035-6. [CrossRef] [Google Scholar]

67. Park H. G., Yeo M. K. Nanomaterial regulatory policy for human health and environment. Molecular & Cellular Toxicology. 2016;12(3):223–236. [Google Scholar]

68. Khanna S., Chakraborty J. N. Mosquito repellent activity of cotton functionalized with inclusion complexes of β-cyclodextrin citrate and essential oils. Fashion and Textiles. 2018;5(1) doi:10.1186/s40691-017-0125-x. [CrossRef] [Google Scholar]

69. Ralambondrainy M., Belarbi E., Viranaicken W., et al. In vitro comparison of three common essential oils mosquito repellents as inhibitors of the Ross River virus. PLoS ONE. 2018;13(5) doi:10.1371/journal.pone.0196757. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Gross A. D., Norris E. J., Kimber M. J., Bartholomay L. C., Coats J. R. Essential oils enhance the toxicity of permethrin against Aedes aegypti and Anopheles gambiae. Medical and Veterinary Entomology. 2017;31(1):55–62. doi:10.1111/mve.12197. [PubMed] [CrossRef] [Google Scholar]

71. Trongtokit Y., Rongsriyam Y., Komalamisra N., Apiwathnasorn C. Comparative repellency of 38 essential oils against mosquito bites. Phytotherapy Research. 2005;19(4):303–309. doi:10.1002/ptr.1637. [PubMed] [CrossRef] [Google Scholar]

72. Tyagi V., Islam J., Agnihotri A., et al. Repellent efficacy of some essential oils against Aedes albopictus. Journal of Parasitic Diseases: Diagnosis and Therapy. 2016;1(1) [Google Scholar]

73. Faraone N., Hillier N. K., Cutler G. C. Plant essential oils synergize and antagonize toxicity of different conventional insecticides against Myzus persicae (Hemiptera: Aphididae) PLoS ONE. 2015;10(5) [PMC free article] [PubMed] [Google Scholar]

74. Chang H. J., Kim H. J., Chun H. S. Quantitative structure-activity relationship (QSAR) for neuroprotective activity of terpenoids. Life Sciences. 2007;80(9):835–841. doi:10.1016/j.lfs.2006.11.009. [PubMed] [CrossRef] [Google Scholar]

75. Cai Y., Bagyinszky E., An S. S. A., Kim S. Y. In silico modeling of pathogenic or possibly pathogenic point mutations in PSEN2. Molecular & Cellular Toxicology. 2016;12(4):453–464. doi:10.1007/s13273-016-0050-x. [CrossRef] [Google Scholar]

76. Andrade-Ochoa S., Correa-Basurto J., Rodríguez-Valdez L. M., Sánchez-Torres L. E., Nogueda-Torres B., Nevárez-Moorillón G. V. In vitro and in silico studies of terpenes, terpenoids and related compounds with larvicidal and pupaecidal activity against Culex quinquefasciatus Say (Diptera: Culicidae) Chemistry Central Journal. 2018;12(1) doi:10.1186/s13065-018-0425-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Qari S. H., Abdel-Fattah N. A. Genotoxic studies of selected plant oil extracts on. Journal of Taibah University for Science. 2018;11(3):478–486. doi:10.1016/j.jtusci.2016.09.010. [CrossRef] [Google Scholar]

78. Plant J., Stephens B. Effects of essential oils on transcriptional regulation in human cells. Medicinal Aromatic Plants. 2015;4(3) [Google Scholar]

79. Liao M., Xiao J. J., Zhou L. J., et al. Insecticidal activity of Melaleuca alternifolia essential oil and RNA-Seq analysis of Sitophilus zeamais transcriptome in response to oil fumigation. PLoS One. 2016;11(12) [PMC free article] [PubMed] [Google Scholar]

80. Kim H. S., Lee H. J., Kim Y. J., Jang W. H., Seo Y. R. A toxicogenomic study for the investigation of genotoxicity-related signaling networks in long-term and low dose lead exposed rat kidney. Molecular & Cellular Toxicology. 2016;12(4):437–445. doi:10.1007/s13273-016-0048-4. [CrossRef] [Google Scholar]

81. Lee W., Kim I., Shin S., et al. Expression profiling of microRNAs in lipopolysaccharide-induced acute lung injury after hypothermia treatment. Molecular & Cellular Toxicology. 2016;12(3):243–253. doi:10.1007/s13273-016-0029-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Kim Y. J., Lee N., Woo S., Ryu J. C., Yum S. Transcriptomic change as evidence for cadmium-induced endocrine disruption in marine fish model of medaka, Oryzias javanicus. Molecular & Cellular Toxicology. 2016;12(4):409–420. doi:10.1007/s13273-016-0045-7. [CrossRef] [Google Scholar]

83. Han X., Parker T. L. Essential oils diversely modulate genome-wide gene expression in human dermal fibroblasts. Cogent Medicine. 2017;4 doi:10.1080/2331205X.2017.1307591.1307591 [CrossRef] [Google Scholar]

84. Kiyama R. DNA microarray-based screening and characterization of traditional Chinese medicine. Microarrays. 2017;6(1) [Google Scholar]

85. Benelli G., Pavela R. Beyond mosquitoes-Essential oil toxicity and repellency against bloodsucking insects. Industrial Crops and Products. 2018;117:382–392. doi:10.1016/j.indcrop.2018.02.072. [CrossRef] [Google Scholar]

86. Govindarajan M., Benelli G. α-Humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae) Parasitology Research. 2016;115(7):2771–2778. doi:10.1007/s00436-016-5025-2. [PubMed] [CrossRef] [Google Scholar]

87. Cheraghi Niroumand M., Farzaei M. H., Karimpour-Razkenari E. E., et al. An evidence-based review on medicinal plants used as insecticide and insect repellent in traditional Iranian medicine. Iranian Red Crescent Medical Journal. 2016;18(2) [PMC free article] [PubMed] [Google Scholar]

88. Govindarajan M., Rajeswary M., Arivoli S., Tennyson S., Benelli G. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors? Parasitology Research. 2016;115(5):1807–1816. doi:10.1007/s00436-016-4920-x. [PubMed] [CrossRef] [Google Scholar]

89. Miroddi M., Calapai G., Isola S., Minciullo P. L., Gangemi S. Rosmarinus officinalis L. as cause of contact dermatitis. Allergologia et Immunopathologia. 2014;42(6):616–619. doi:10.1016/j.aller.2013.04.006. [PubMed] [CrossRef] [Google Scholar]

90. Govindarajan M., Rajeswary M., Hoti S. L., Benelli G. Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae) Research in Veterinary Science. 2016;104:77–82. doi:10.1016/j.rvsc.2015.11.011. [PubMed] [CrossRef] [Google Scholar]

91. Witting-Bissinger B. E., Stumpf C. F., Donohue K. V., Apperson C. S., Roe R. M. Novel arthropod repellent, BioUD, is an efficacious alternative to DEET. Journal of Medical Entomology. 2008;45(5):891–898. doi:10.1603/0022-2585(2008)45[891:NARBIA]2.0.CO;2. [PubMed] [CrossRef] [Google Scholar]

92. Fradin M. S., Day J. F. Comparative efficacy of insect repellents against mosquito bites. The New England Journal of Medicine. 2002;347(1):13–18. doi:10.1056/nejmoa011699. [PubMed] [CrossRef] [Google Scholar]

93. Van Roey K., Sokny M., Denis L., et al. Field evaluation of picaridin repellents reveals differences in repellent sensitivity between Southeast Asian vectors of malaria and arboviruses. PLOS Neglected Tropical Diseases. 2014;8(12) [PMC free article] [PubMed] [Google Scholar]

94. Carroll S. P., Loye J. PMD, a registered botanical mosquito repellent with deet-like efficacy. Journal of the American Mosquito Control Association. 2006;22(3):507–514. doi:10.2987/8756-971X(2006)22[507:PARBMR]2.0.CO;2. [PubMed] [CrossRef] [Google Scholar]

95. Yoon J. K., Kim K. C., Cho Y., et al. Comparison of repellency effect of mosquito repellents for DEET, citronella, and fennel oil. Journal of Parasitology Research. 2015;2015:6. doi:10.1155/2015/361021.361021 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Kongkaew C., Sakunrag I., Chaiyakunapruk N., Tawatsin A. Effectiveness of citronella preparations in preventing mosquito bites: systematic review of controlled laboratory experimental studies. Tropical Medicine & International Health. 2011;16(7):802–810. doi:10.1111/j.1365-3156.2011.02781.x. [PubMed] [CrossRef] [Google Scholar]

97. Sharma R., Rao R., Kumar S., Mahant S., Khatkar S. Therapeutic potential of citronella essential oil: a review. Current Drug Discovery Technologies. 2018;15(4):1570–1638. doi:10.2174/1570163815666180718095041. [PubMed] [CrossRef] [Google Scholar]

98. Tan K. H., Nishida R. Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. Journal of Insect Science. 2012;12, article no. 56 doi:10.1673/031.012.5601. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Drago B., Shah N. S., Shah S. H. Acute permethrin neurotoxicity: Variable presentations, high index of suspicion. Toxicology Reports. 2014;1:1026–1028. doi:10.1016/j.toxrep.2014.09.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Essential Oils as Repellents against Arthropods (2024)
Top Articles
Passive and Impact Investing Strategies
Can Anybody Beat the Market?
Katie Pavlich Bikini Photos
Gamevault Agent
Hocus Pocus Showtimes Near Harkins Theatres Yuma Palms 14
Free Atm For Emerald Card Near Me
Craigslist Mexico Cancun
Hendersonville (Tennessee) – Travel guide at Wikivoyage
Doby's Funeral Home Obituaries
Vardis Olive Garden (Georgioupolis, Kreta) ✈️ inkl. Flug buchen
Select Truck Greensboro
How To Cut Eelgrass Grounded
Pac Man Deviantart
Alexander Funeral Home Gallatin Obituaries
Craigslist In Flagstaff
Shasta County Most Wanted 2022
Energy Healing Conference Utah
Testberichte zu E-Bikes & Fahrrädern von PROPHETE.
Aaa Saugus Ma Appointment
Geometry Review Quiz 5 Answer Key
Walgreens Alma School And Dynamite
Bible Gateway passage: Revelation 3 - New Living Translation
Yisd Home Access Center
Home
Shadbase Get Out Of Jail
Gina Wilson Angle Addition Postulate
Celina Powell Lil Meech Video: A Controversial Encounter Shakes Social Media - Video Reddit Trend
Walmart Pharmacy Near Me Open
Dmv In Anoka
A Christmas Horse - Alison Senxation
Ou Football Brainiacs
Access a Shared Resource | Computing for Arts + Sciences
Pixel Combat Unblocked
Umn Biology
Cvs Sport Physicals
Mercedes W204 Belt Diagram
Rogold Extension
'Conan Exiles' 3.0 Guide: How To Unlock Spells And Sorcery
Teenbeautyfitness
Weekly Math Review Q4 3
Facebook Marketplace Marrero La
Nobodyhome.tv Reddit
Topos De Bolos Engraçados
Gregory (Five Nights at Freddy's)
Grand Valley State University Library Hours
Holzer Athena Portal
Hampton In And Suites Near Me
Stoughton Commuter Rail Schedule
Bedbathandbeyond Flemington Nj
Free Carnival-themed Google Slides & PowerPoint templates
Otter Bustr
Selly Medaline
Latest Posts
Article information

Author: Reed Wilderman

Last Updated:

Views: 5778

Rating: 4.1 / 5 (72 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Reed Wilderman

Birthday: 1992-06-14

Address: 998 Estell Village, Lake Oscarberg, SD 48713-6877

Phone: +21813267449721

Job: Technology Engineer

Hobby: Swimming, Do it yourself, Beekeeping, Lapidary, Cosplaying, Hiking, Graffiti

Introduction: My name is Reed Wilderman, I am a faithful, bright, lucky, adventurous, lively, rich, vast person who loves writing and wants to share my knowledge and understanding with you.