Electron Transport Chain (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    455
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The electron transport chain (aka ETC) is a process in which the NADH and [FADH2] produced during glycolysis, β-oxidation, and other catabolic processes are oxidized thus releasing energy in the form of ATP. The mechanism by which ATP is formed in the ETC is called chemiosmotic phosphorolation.

    Introduction

    The byproducts of most catabolic processes are NADH and [FADH2] which are the reduced forms. Metabolic processes use NADH and [FADH2] to transport electrons in the form of hydride ions (H-). These electrons are passed from NADH or [FADH2] to membrane bound electron carriers which are then passed on to other electron carriers until they are finally given to oxygen resulting in the production of water. As electrons are passed from one electron carrier to another hydrogen ions are transported into the intermembrane space at three specific points in the chain. The transportation of hydrogen ions creates a greater concentration of hydrogen ions in the intermembrane space than in the matrix which can then be used to drive ATP Synthase and produce ATP (a high energy molecule).

    Overview

    In the diagram located below there are the major electron transporters responsible for making energy in the ETC.

    Electron Transport Chain (1)

    The Electron Carriers

    • I (NADH-ubiquinone oxidioreductase): An integral protein that receives electrons in the form of hydride ions from NADH and passes them on to ubiquinone
    • II (Succinate-ubiquinone oxidioreductase aka succinate dehydrogenase from the TCA cycle): A peripheral protein that receives electrons from succinate (an intermediate metabolite of the TCA cycle) to yield fumarate and [FADH2]. From succinate the electrons are received by [FAD] (a prosthetic group of the protein) which then become [FADH2]. The electrons are then passed off to ubiquinone.
    • Q (Ubiquinone/ ubiquinol): Ubiquinone (the oxidized form of the molecule) receives electrons from several different carriers; from I, II, Glycerol-3-phosphate dehydrogenase, and ETF. It is now the reduced form (ubiquinol) which passes its electron off to III.
    • III (Ubiquinol-cytochrome c oxidioreductase): An integral protein that receives electrons from ubiquinol which are then passed on to Cytochrome c
    • IV (Cytochrome c oxidase):An integral protein that that receives electrons from Cytochrome c and transfers them to oxygen to produce water within the mitochondria matrix.
    • ATP Synthas: An integral protein consisting of several different subunits. This protein is directly responsible for the production of ATP via chemiosmotic phosphorolation. It uses the proton gradient created by several of the other carriers in the ETC to drive a mechanical rotor. The energy from that rotor is then used to phosphorolate ADT to ATP.

    Not Shown

    • ETF (Electron-transferring flavoprotein) Dehydrogenase: This peripheral protein located on the matrix side of the inner membrane is a part the B-oxidation cycle. Electrons from acyl-CoA are donated to an electron-transfer flavoprotien which are then transferred to ETF (Electron-transferring flavoprotein) Dehydrogenase in the form of [FADH2]. ETF dehydrogenase then passes those electrons from [FADH2] to ubiquinone and on through the ETC.
    • Glycerol-3-phosphate dehydrogenas:This peripheral protein located on the intermembrane space side of the inner membrane is a part of the glycerol-3-phosphate transport system. It accepts a proton from glycerol-3-phosphate to a prosthetic [FAD] group which yields [FADH2]. From [FADH2] the electrons are then given to ubiquinone and on through the ETC.

    Electron Flow

    It should be noted from the diagram below that ubiquinone (a hydrophobic carrier that resides within the membrane) receives electrons from several different electron carriers. Cytochrome c (a hydrophilic carrier found with in the intermembrane space) on the other hand only transfers electrons from III to IV. The driving force of the ETC is the fact that each electron carrier has a higher standard reduction potential than the one that it accepts electrons from. Standard reduction potential is a measure of the ability to accept or donate electrons. Oxygen has the highest (most positive) standard reduction potential which means that is is most likely to accept electrons from other carriers. That is precisely why it is found at the end of the ETC.

    Proton Motive Force

    Proton motive force refers to the energy obtained from the proton gradient created by several of the electron carriers. Only three of the four mentioned electron carriers are capable of transporting protons from the matrix to the intermembrane space: I, III, and IV. It is this proton gradient that drives phosphorolation of ADP to ATP as well as several other important transport systems. As proton concentration builds up in the intermembrane space a gradient is created and protons are transported from high to low concentration. The energy from the transfer of protons is used to change ADP into ATP though phosphorolation. ATP synthase is the protein responsible for ADP phosphorolation.

    It is also important for proper concentrations of substrates to be maintained within and without the mitochondria to allow for chemiosmotic phosphorolation. The two main types of proteins responsible for maintaining proper substrate concentrations are pyruvate and phosphate symporters and ADP/ATP antiporters.

    Electron Transport Chain (2024)
    Top Articles
    What is Cortana on Windows 10?
    Buying A Second Home With A VA Loan
    Bubble Guppies Who's Gonna Play The Big Bad Wolf Dailymotion
    Ron Martin Realty Cam
    Swimgs Yuzzle Wuzzle Yups Wits Sadie Plant Tune 3 Tabs Winnie The Pooh Halloween Bob The Builder Christmas Autumns Cow Dog Pig Tim Cook’s Birthday Buff Work It Out Wombats Pineview Playtime Chronicles Day Of The Dead The Alpha Baa Baa Twinkle
    Garrison Blacksmith Bench
    Ffxiv Shelfeye Reaver
    Craigslist Niles Ohio
    Rainbird Wiring Diagram
    Mohawkind Docagent
    Infinite Campus Parent Portal Hall County
    Richmond Va Craigslist Com
    R/Altfeet
    Chastity Brainwash
    Best Forensic Pathology Careers + Salary Outlook | HealthGrad
    Why Should We Hire You? - Professional Answers for 2024
    Aol News Weather Entertainment Local Lifestyle
    8005607994
    Plaza Bonita Sycuan Bus Schedule
    Johnnie Walker Double Black Costco
    Project Reeducation Gamcore
    Www.craigslist.com Austin Tx
    Sound Of Freedom Showtimes Near Movie Tavern Brookfield Square
    Account Now Login In
    Encore Atlanta Cheer Competition
    Tactical Masters Price Guide
    Craftsman Yt3000 Oil Capacity
    Mawal Gameroom Download
    Helloid Worthington Login
    James Ingram | Biography, Songs, Hits, & Cause of Death
    Chadrad Swap Shop
    Manuel Pihakis Obituary
    Ixlggusd
    Everstart Jump Starter Manual Pdf
    Cars And Trucks Facebook
    Agematch Com Member Login
    Laff Tv Passport
    Cheetah Pitbull For Sale
    Craigslist Tulsa Ok Farm And Garden
    Wayne State Academica Login
    The Angel Next Door Spoils Me Rotten Gogoanime
    Giovanna Ewbank Nua
    Citizens Bank Park - Clio
    About Us
    Greg Steube Height
    VerTRIO Comfort MHR 1800 - 3 Standen Elektrische Kachel - Hoog Capaciteit Carbon... | bol
    Phone Store On 91St Brown Deer
    Coleman Funeral Home Olive Branch Ms Obituaries
    Okta Hendrick Login
    Ubg98.Github.io Unblocked
    라이키 유출
    Latest Posts
    Article information

    Author: Van Hayes

    Last Updated:

    Views: 6125

    Rating: 4.6 / 5 (46 voted)

    Reviews: 85% of readers found this page helpful

    Author information

    Name: Van Hayes

    Birthday: 1994-06-07

    Address: 2004 Kling Rapid, New Destiny, MT 64658-2367

    Phone: +512425013758

    Job: National Farming Director

    Hobby: Reading, Polo, Genealogy, amateur radio, Scouting, Stand-up comedy, Cryptography

    Introduction: My name is Van Hayes, I am a thankful, friendly, smiling, calm, powerful, fine, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.