Credit Risk Prediction Using Artificial Neural Network Algorithm - DataScienceCentral.com (2024)

1 Introduction

Credit risk or credit default indicates the probability of non-repayment of bank financial services that have been given to the customers. Credit risk has always been an extensively studied area in bank lending decisions. Credit risk plays a crucial role for banks and financial institutions, especially for commercial banks and it is always difficult to interpret and manage. Due to the advancements in technology, banks have managed to reduce the costs, in order to develop robust and sophisticated systems and models to predict and manage credit risk.

Credit Risk Prediction Using Artificial Neural Network Algorithm - DataScienceCentral.com (1)

To predict the credit default, several methods have been created and proposed. The use of method depends on the complexity of banks and financial institutions, size and type of the loan. The commonly used method has been discrimination analysis. This method uses a score function that helps in decision making whereas some researchers have stated doubts on the validity of discriminates analysis because of its restrictive assumptions; normality and independence among variables [4]. Artificial neural network models have created to overcome the shortcomings of other inefficient credit default models.

The objective of this paper is to study the ability of neural network algorithms to tackle the problem of predicting credit default, that measures the creditworthiness of the loan application over a time period. Feed forward neural network algorithm is applied to a small dataset of residential mortgages applications of a bank to predict the credit default. The output of the model will generate a binary value that can be used as a classifier that will help banks to identify whether the borrower will default or not default. This paper will follow an empirical approach which will discuss two neural network-based models and experimental results will be reported by training and validating the models on residential mortgage loan applications. As the final step in the direction, linear regression method is also performed on the dataset.

2 Methodology

2.1 Data

Data has been collected from kaggle.com (lending club loan data) that consists of more than 8.5 million records. A random sample data of 60,000 records have been pulled out from the dataset and appropriate attribute selection has been done from 80 attributes. Attribute selection includes numeric and integer attributes along with some factor attribute relevant to the problem this paper is dealing with. Dataset consists of combination of variables as follows:

  1. Dependent Variable: loan_status(0 and 1);if the borrower will default then the investment will be bad and if the borrower will not default then he or she will be able to repay the full loan amount. So, to differentiate in neural network 0 indicates borrower will default and 1 indicates borrower will not default.
  2. Independent Variable: Following variables are considered as an independent variable, loan_amnt, funded_amnt, emp_length, Grade, funded_amnt_inv, term, int_rate, instalment, annual_inc, issue_d and application_type

2.2 Model

In this study, a classic feed-forward neural network has been used. The feedforward network consists of an input layer with 10 input variables, 7 hidden layers and an output layer with one neuron that represents a classifier. The network is trained by using a supervised learning algorithm(back propagation algorithm. The algorithm optimises the neuron weights be minimising the error between actual and desired output. Error is for neuron i. Weights will be updated by formula, where f be the learning coefficient and is the output from hidden layer. Algorithm will work until a stopping criterion is found.

It is necessary to carefully choose the parameters, such as the value of f and a number of neurons and number of hidden layers, for the neural network algorithm as shown in Fig.3. In fig 3 connections are represented by black lines between every layer and weights and the blue line shows the bias(intercept of the model) in every step. The network is a black box and training algorithm is ready to use as it is converged. Also, a random sample has been created from the extracted dataset for the network algorithm. Then a training and test dataset is created used to train the model and to validate the performance of the model respectively.

Figure 3: Neural network plot of the credit default model

3 Experiments and Results

There are 10 normalised variables have been fed as the input to the network arranged in an order. The output of the network is a classifier that results in 0 and 1. At first, data has been checked for missing datapoint value, no data was missing; there was no need to fix the dataset. Correlation matrix of the inputs have been shown in Fig. 4.

Figure 4: Correlation Plot of the input dataset

Once the dataset was trained, it was tested on the test dataset. To compute the output based on the other inputs, compute function has been used. 7 hidden layers were added to the network and model was created. Following result matrix has been generated by the network:

Table 1: Result matrix for classic feed forward neural network

Attribute

Value

Error

322.833

Reached Threshold

0.0998

Steps

6765

Total 6765 steps were needed until all derivatives of the error function was smaller than default threshold(0.01). After implementing classic feed forward algorithm, another model has been implemented by using back propagation algorithm with 0.01 learning rate. Classic process and back propagation process have almost same error rate. Thus, classic model fit is less satisfied than back propagation algorithm.

Figure 5: Generalised weights of the input

Table 2: Comparison of predicted output and desired output

Actual

Prediction

Matches

0.0032

True

0.00017

True

0.0114

True

1

0.985

True

0.0060

True

0.0132

True

0.9704

False

0.0101

True

1

0.00128

True

Last, linear regression have been applied to the dataset in order to compare the accuracy of both the algorithms. glm() function has been used to fit the linear regression model. For regression a probability greater than 0.5 has been assigned, if predicted values in the regression are greater than 0.5, then the value is 1 else 0. Accuracy has been calculated by incorporating misclassification error and confusion matrix has also calculated as shown in Fig.6.

Figure 6: Confusion matrix and statistics of linear regression

To highlight the comparison, mean square error of both linear regression and the neural network has been calculated as shown in table 3. As can be seen in the table mean square error of both the process is approximately same and thus both the process are doing same work. It is necessary to know that deviation in MSE depends on the training and test split.

Table 3: Mean Square error of both the processes

MSE neural network

MSE linear regression

0.0220449

0.0227334

4 Conclusion

This paper has studied artificial neural network and linear regression models to predict credit default. Both the system has been trained on the loan lending data provided by kaggle.com. Results of both the system have shown an equal effect on the data set and thus are very effective with the accuracy of 97.67575% by artificial neural network and 97.69609%. The system classifies the output variable correctly with a very low error. So, both process can be used to identify credit default with equal accuracy. Also, the neural network represents a black box method such that it is difficult to explain the outcome compared to the linear regression model. Therefore, which model to use depends on the application one has to use. Moreover, while fitting a model using neural network process user needs to take extra care of the attributes and data normalization to improve the performance. To conclude, neural network provides strong evidence to efficiently predict the credit default for a loan application.

Neural network algorithms have a wide range of applications that are not only essential for residential mortgages. Other applications can be rating bonds issued by companies commonly known as bond rating, rating short term investments that can last up to 1 year, long-term and short-term ratings of local and foreign currencies, sovereign, or country ratings. The prediction system can be further enhanced to assign a credit rating to an application by using appropriate algorithms and technologies.

Keywords: Credit Risk, Artificial Neural Network, Linear Regression

About Author:

Shruti Goyal has degrees in MSc Business Analytics from UCD Michael Smurfit Graduate Business School,Dublin, Ireland and B.Tech. from Guru Gobind Singh Indrapratha University Delhi, India. She has over 4 years of experience in data analytics and performance management consulting, previous she has worked IBM Labs and Tata Consultancy Services. Currently she is working as Co-Founder at Reckon Analytics.

Credit Risk Prediction Using Artificial Neural Network Algorithm - DataScienceCentral.com (2024)

FAQs

How is AI applied in credit risk? ›

Gen AI–powered virtual experts could help customers identify and determine suitable products. During credit decision and underwriting processes, gen AI tools could review documents and flag policy violations or missing data.

How to predict using artificial neural network? ›

How does actually Neural Networks Predict? Each neuron takes into consideration a set of input values. Each of them gets linked to a “weight”, which is a numerical value that can be derived using either supervised or unsupervised training such as data clustering, and a value called “bias”.

How is AI ML changing financial risk management? ›

In risk management, AI/ML has become synonymous with improving efficiency and productivity while reducing costs. This has been possible due to the technologies' ability to handle and analyze large volumes of unstructured data at faster speeds with considerably lower degrees of human intervention.

How can AI fight financial crime? ›

AI has helped us to improve the precision of our financial crime detection and reduce alert volumes, meaning less investigation time is spent chasing false leads. It has also helped us reduce the processing time required to analyse billions of transactions across millions of accounts from several weeks to a few days.

What is the best neural network for prediction? ›

Convolutional Neural Networks, or CNNs, were designed to map image data to an output variable. They have proven so effective that they are the go-to method for any type of prediction problem involving image data as an input.

How accurate is AI prediction? ›

While its predictions are not guaranteed to be correct, predictive AI can help businesses prepare for the future and personalize experiences for their customers.

How to use AI for prediction? ›

AI predictive analytics uses machine learning (ML) algorithms and models that learn from data over time. These models are trained on historical data so they can identify patterns and relationships. Once trained, the models are applied to new, unseen data to make predictions about future outcomes.

How AI can be used in risk management? ›

AI models, for instance, can detect patterns that identify potential risks of losses that could occur based on analysis of large amounts of data, including contracts. This automation can be game-changing for organizations losing money and missing out on business opportunities due to contracting inefficiencies.

How is AI used in credit rating? ›

AI can leverage non-traditional data sources like social media activity, mobile phone usage, and utility bill payments to evaluate creditworthiness. For individuals with limited credit history, these alternative data points offer additional insights into their financial behavior and reliability.

How is artificial intelligence used in lending? ›

AI is enabling lenders and financial institutions to automate processes, reduce costs, improve customer experience, and manage risks more effectively. AI can also help lenders offer more personalized and tailored products and services to their customers, based on their preferences, behavior, and creditworthiness.

How AI helps to manage trading as well as risk management in the finance sector? ›

AI helps financial institutions assess and manage risks by analyzing vast amounts of data and ensuring regulatory compliance. Models such as Predictive Modeling, Bayesian Networks, Decision Trees, and Support Vector Machines (SVM) are used to dynamically evaluate risks.

Top Articles
How to Save Money While You Slow Travel
Travel Insurance for Hurricane Season
Pollen Count Centreville Va
Devon Lannigan Obituary
Ups Dropoff Location Near Me
Craftsman M230 Lawn Mower Oil Change
Mrh Forum
THE 10 BEST Women's Retreats in Germany for September 2024
Large storage units
Facebook Marketplace Charlottesville
WWE-Heldin Nikki A.S.H. verzückt Fans und Kollegen
Viha Email Login
Letter F Logos - 178+ Best Letter F Logo Ideas. Free Letter F Logo Maker. | 99designs
Munich residents spend the most online for food
Nutrislice Menus
R Cwbt
How Much Is Tay Ks Bail
U Arizona Phonebook
Gayla Glenn Harris County Texas Update
Selfservice Bright Lending
Craigslist Panama City Beach Fl Pets
2023 Ford Bronco Raptor for sale - Dallas, TX - craigslist
Uky Linkblue Login
How Do Netspend Cards Work?
DIY Building Plans for a Picnic Table
Busted! 29 New Arrests in Portsmouth, Ohio – 03/27/22 Scioto County Mugshots
Prima Healthcare Columbiana Ohio
Pitco Foods San Leandro
Tyler Sis 360 Boonville Mo
Wednesday Morning Gifs
Afspraak inzien
The Syracuse Journal-Democrat from Syracuse, Nebraska
Pawn Shop Open Now
Finland’s Satanic Warmaster’s Werwolf Discusses His Projects
Prior Authorization Requirements for Health Insurance Marketplace
Craigslist Florida Trucks
Metro Pcs Forest City Iowa
Sukihana Backshots
Join MileSplit to get access to the latest news, films, and events!
How to Quickly Detect GI Stasis in Rabbits (and what to do about it) | The Bunny Lady
Walmart Car Service Near Me
Divinity: Original Sin II - How to Use the Conjurer Class
Lucyave Boutique Reviews
Booknet.com Contract Marriage 2
Spurs Basketball Reference
Sacramentocraiglist
Boyfriends Extra Chapter 6
CPM Homework Help
Clock Batteries Perhaps Crossword Clue
Craigslist.raleigh
Invitation Quinceanera Espanol
Latest Posts
Article information

Author: Laurine Ryan

Last Updated:

Views: 6470

Rating: 4.7 / 5 (77 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Laurine Ryan

Birthday: 1994-12-23

Address: Suite 751 871 Lissette Throughway, West Kittie, NH 41603

Phone: +2366831109631

Job: Sales Producer

Hobby: Creative writing, Motor sports, Do it yourself, Skateboarding, Coffee roasting, Calligraphy, Stand-up comedy

Introduction: My name is Laurine Ryan, I am a adorable, fair, graceful, spotless, gorgeous, homely, cooperative person who loves writing and wants to share my knowledge and understanding with you.