Compound Interest Formula With Examples (2024)

Compound Interest Formula With Examples (1)By Alastair Hazell.Reviewed by Chris Hindle.

Compound interest, or 'interest on interest', is calculated using the compound interest formula A = P*(1+r/n)^(nt),where P is the principal balance, r is the interest rate (as a decimal), n represents the number of times interest is compounded per year and t is the number of years.

Compound Interest Formula With Examples (2)

How to use the formula

To better understand the formula, let's create a simple example. We'll say that you invest $10,000 into a savingsaccount for 20 years at an annual interest rate of 6%, compounded monthly. Here's how our calculation looks:

  • P = 10000
  • r = 6/100 = 0.06 (decimal)
  • n = 12
  • t = 20

Plugging those figures into the formula, we can calculate as follows:

  • A = 10000 × (1 + 0.06 / 12)^(12 × 20)
  • A = 10000 × (1 + 0.005)^240
  • A = 10000 × 3.310204
  • A = 33,102.04

The investment balance after 20 years is therefore $33,102.04. Checking this figure against ourcompound interest calculator, we can see that we have calculated correctly.

Keep scrolling to see variations of the formula for annual, quarterly, monthly and daily compounding, a step-by-step explanation of how to use the formula,and some information on how to integrate it within a spreadsheet...

  • Table of contents:
  • Formula variations
  • How to use the formula
  • Monthly compound interest formula
  • How to use the formula in Excel or Google Sheets
  • Example calculation
  • Interactive compound interest formula
  • Formula for calculating interest rate (%)
  • Formula for calculating principal
  • Formula for calculating time factor
  • Monthly contributions formula

Formula variations

To assist those looking for a convenient formula reference, I've included a concise list of compound interest formula variations applicable to common compounding intervals. Later in the article, we will delve into each variation separately for a comprehensive understanding.

CalculationFormula
Annual compounding (1x compound per year)A = P(1 + r)^t
Quarterly compoundingA = P(1 + r/4)^4t
Monthly compoundingA = P(1 + r/12)^12t
Daily compoundingA = P(1 + r/365)^365t
Calculate principal (P) based upon future valueP = A / (1 + r/n)^nt
Calculate interest rate % (R)R = n[(A/P)^(1/nt)-1] × 100
Calculate time factor (t)t = ln(A/P) / n[ln(1 + r/n)]

Where:

  • A = future value of the investment/loan
  • P = principal amount
  • r = annual interest rate (decimal)
  • R = annual interest rate (percentage)
  • n = number of times interest is compounded per year
  • t = time in years
  • ^ = ... to the power of ...
  • ln = the natural logarithm

How to use the compound interest formula

In order to use the compound interest formula you will require specific values for your initial balance (principal), annual interest rate (expressed as a decimal), the number of compounds per year and the number ofyears you wish to calculate for. Let's take a look at how we put these into our formula...

How to calculate compound interest using the formula

Start by multiply your initial balance by one plus the annual interest rate (expressed as a decimal) divided by the number of compounds per year. Next, raise the result to the power of the number of compounds per year multiplied by the number of years. Subtract the initial balancefrom the result if you want to see only the interest earned.

The above set out as a formula is:

A = P(1 + r/n)^nt

Where:

  • A = future value of the investment/loan
  • P = principal investment or loan amount
  • r = annual interest rate (decimal)
  • n = number of times interest is compounded per year
  • t = time in years
  • ^ = ... to the power of ...

It's worth noting that this formula gives you the future value of an investment or loan, which is compound interest plus the principal. Should you wish tocalculate the compound interest only, you need to deduct the principal from the result. So, your formula looks like this:

Earned interest only (without principal)

Interest = P(1 + r/n)^nt - P

Let's look at how we can use this formula for monthly compounding, and we can then go through an example calculation...

Monthly compound interest formula

The formula for calculating compound interest with monthly compounding is:

A = P(1 + r/12)^12t

Where:

  • A = future value of the investment
  • P = principal investment amount
  • r = annual interest rate (decimal)
  • t = time in years
  • ^ = ... to the power of ...

How to use the formula in Excel or Google Sheets

If you're using Excel, Google Sheets or Numbers, you can copy and paste the following into your spreadsheet and adjust your figures for the first fourrows as you see fit. This example shows monthly compounding (12 compounds per year) with a 5% interest rate.

Principal10,000
Interest rate (%)5
Compounds per year12
Years10
Future value= ROUND(INDIRECT(ADDRESS(ROW()-4,COLUMN())) * (1+(INDIRECT(ADDRESS(ROW()-3,COLUMN())) / 100)/INDIRECT(ADDRESS(ROW()-2,COLUMN()))) ^ (INDIRECT(ADDRESS(ROW()-2,COLUMN())) * INDIRECT(ADDRESS(ROW()-1,COLUMN()))),2)

Here's how it will look in Excel or Google Sheets...

Compound Interest Formula With Examples (3)

Now that we've looked at how to use the formula for calculations in Excel, let's go through a step-by-step example to demonstrate how to make a manualcalculation using the formula...

Example calculation

If an amount of $10,000 is deposited into a savings account at an annual interest rate of 3%, compounded monthly, the value of the investment after 10 years can be calculated as follows...

  • P = 10000
  • r = 3/100 = 0.03 (decimal)
  • n = 12
  • t = 10

If we plug those figures into the formula, we get the following:

A = 10000 × (1 + 0.03 / 12)^(12 * 10) = 13493.54.

So, the investment balance after 10 years is $13,493.54.

Formula methodology

Let's go through, step-by-step, how we get the 13493.54 result. Our methodology revolves around the PEMDAS order of operations.That is to say that we have to perform operations such as multiplication and addition in the right order.

Compound Interest Formula With Examples (4)

Let's start off with our equation again:

A = 10000 (1 + 0.03 / 12) ^ (12(10))

(note that ^ means 'to the power of')

Using the order of operations we work out the totals in the brackets first.

Within the first set of brackets, you need to do the division first and then the addition (division and multiplication should be carried out before addition and subtraction). We can also work out the 12(10), which is 12 × 10. This gives us...

A = 10000 (1 + 0.0025)^120

Then:

A = 10000 (1.0025)^120

The exponent goes next. So, we calculate 1.0025^120.

This means we end up with:

10000 × 1.34935355

= 13,493.54.

The benefits of compound interest

I think it's worth taking a moment to mention the monetary gain that interest compounding can offer.

Looking back at our example, with simple interest (no compounding), your investment balanceat the end of the term would be $13,000, with $3,000 interest. With regular interest compounding, however, you would stand to gain an additional $493.54 on top.

Interest for $10,000 at 3% for 10 years:

  • With simple interest: $3,000
  • With compound interest: $3,493.54

Interest for $10,000 at 5% for 10 years:

  • With simple interest: $5,000
  • With compound interest: $6,470.09

Interactive compound interest formula

I created the calculator below to show you the formula and resulting accrued investment/loan value (A) for the figures that you enter.

P(1 +rn)(nt)=A

It may be that you want to manipulate the compound interest formula to work out the interest rate for IRR or CAGR, or a principal investment/loan figure. Here are the formulae you need.

Formula for calculating interest rate (r)

Compound Interest Formula With Examples (5)

This formula can help you work out the yearly interest rate you're getting on your savings, investment or loan. Note that youshould multiply your result by 100 to get a percentage figure (%).

r = n[(A/P)^(1/nt)-1]

Where:

  • r = interest rate (decimal)
  • A = future value of the investment
  • P = principal investment amount
  • n = number of times interest is compounded per year
  • t = time in years
  • ^ = ... to the power of ...

Formula for calculating principal (P)

Compound Interest Formula With Examples (6)

This formula is useful if you want to work backwards and calculate how much your starting balance would need to be in order to achieve a future monetary value.

P = A / (1 + r/n)^nt

Where:

  • P = principal investment amount
  • A = future value of the investment
  • r = interest rate (decimal)
  • n = number of times interest is compounded per year
  • t = time in years
  • ^ = ... to the power of ...

Example: Let's say your goal is to end up with $10,000 in 5 years, and you can get an 8% interest rate on your savings, compounded monthly. Your calculation would be: P = 10000 / (1 + 0.08/12)^(12×5) = $6712.10. So, you would need to start off with $6712.10 to achieve your goal.

Formula for calculating time factor (t)

This variation of the formula works for calculating time (t), by using natural logarithms. You can use it to calculatehow long it might take you to reach your savings target, based upon an initial balance and interest rate. Youcan see how this formula was worked out by reading this explanation on algebra.com.

t = ln(A/P) / n[ln(1 + r/n)]

Where:

  • A = value of the accrued investment/loan
  • P = principal amount
  • r = annual interest rate (decimal)
  • n = number of times interest is compounded per year
  • t = time in years
  • ln = the natural logarithm

Monthly contributions formula

I've received a lot of requests over the years to provide a formula for compound interest with monthly contributions. So, let's go over how we do this.

In order to work out calculations involving regular contributions, you will need to combine two formulae: our originalcompound interest formula — P(1+r/n)^(nt) — plus the future value of a series formula for the monthly deposits.

These formulae assume that your frequency of compounding is the same as the periodic payment interval (monthly compounding, monthly contributions, etc).

If the additional deposits are made at the END of the period (end of month, year, etc), here are the two formulae you need:

Compound interest for principal:

P(1+r/n)^(nt)

Future value of a series:

PMT × {[(1 + r/n)^(nt) - 1] / (r/n)}

If the additional deposits are made at the BEGINNING of the period (beginning of year, etc), here are the two formulae you need:

Compound interest for principal:

P(1+r/n)^(nt)

Future value of a series:

PMT × {[(1 + r/n)^(nt) - 1] / (r/n)} × (1+r/n)

Where:

  • A = future value of the investment/loan
  • P = principal investment amount
  • PMT = monthly payment amount
  • r = annual interest rate (decimal)
  • n = number of times interest is compounded per year
  • t = time in years
  • ^ = ... to the power of ...

Example calculation

If an amount of $5,000 is deposited into a savings account at an annual interest rate of 3%, compounded monthly, with additional deposits of $100 per month(made at the end of each month). The value of the investment after 10 years can be calculated as follows...

P = 5000. PMT = 100. r = 3/100 = 0.03 (decimal). n = 12. t = 10.

Let's plug those figures into our formulae and use our PEMDAS order of operations to create our calculation...

  • Total = [ Compound interest for principal ] + [ Future value of a series ]
  • Total = [ P(1+r/n)^(nt) ] + [ PMT × (((1 + r/n)^(nt) - 1) / (r/n)) ]
  • Total = [ 5000 × (1 + 0.03 / 12)^(12 × 10) ] + [ 100 × (((1 + 0.03 / 12)^(12 × 10) - 1) / (0.03 / 12)) ]
  • Total = [ 5000 × (1 + 0.0025)^(12 × 10) ] + [ 100 × (((1 + 0.0025)^(12 × 10) - 1) / (0.0025)) ]
  • Total = [ 5000 × (1.0025)^120 ] + [ 100 × (((1.0025^120) - 1) / 0.0025) ]
  • Total = [ 6746.77 ] + [ 100 × (0.34935354719 / 0.0025) ]
  • Total = [ 6746.77 ] + [ 13974.14 ]
  • Total = [ $20,720.91 ]

Our investment balance after 10 years therefore works out at $20,720.91.

To conclude

This article about the compound interest formula has expanded and evolved based upon your requests for adapted formulae andexamples. So, I appreciate it's now quite long and detailed. That said, I hope you've found it useful. Please feel free to share any thoughts in the comments section below.

Should you need any help with checking your calculations, please make use of our popular compound interestcalculator and daily compounding calculator.

By Alastair HazellUpdated: September 4, 2023

Like this? Please share

Disclaimer: Whilst every effort has been made in building our calculator tools, we are not to be heldliable for any damages or monetary losses arising out of or in connection with their use. Full disclaimer.

References

  1. Discounting and compounding. John A. Dutton e-Education Institute.

Your comments

Compound Interest Formula With Examples (2024)

FAQs

What is the formula of compound interest with an example? ›

The compound interest is found using the formula: CI = P( 1 + r/n)nt - P. In this formula, P( 1 + r/n)nt represents the compounded amount. the initial investment P should be subtracted from the compounded amount to get the compound interest.

How much is $1000 worth at the end of 2 years if the interest rate of 6% is compounded daily? ›

Basic compound interest

For other compounding frequencies (such as monthly, weekly, or daily), prospective depositors should refer to the formula below. Hence, if a two-year savings account containing $1,000 pays a 6% interest rate compounded daily, it will grow to $1,127.49 at the end of two years.

How do you solve compound interest questions easily? ›

A = P (1+ r/n)nt
  1. A = Total Amount.
  2. P = Initial Principal.
  3. r = Rate of interest on which loan or deposit is disbursed.
  4. n = number of times the interest is compounded in a year. It can be monthly, half-yearly, quarterly, or yearly.
  5. t = time in years.
Nov 7, 2023

What is the formula for finding the answer to a compound interest problem? ›

This is interest that is calculated on both the principal and accrued interest at scheduled intervals. The formula we use to find compound interest is A = P(1 + r/n)^nt. In this formula, A stands for the total amount that accumulates. P is the original principal; that's the money we start with.

What is the fastest way to calculate compound interest? ›

Compound interest is calculated by multiplying the initial principal amount by one plus the annual interest rate raised to the number of compound periods minus one. The total initial principal or amount of the loan is then subtracted from the resulting value. Katie Kerpel {Copyright} Investopedia, 2019.

How do you explain compound interest with examples? ›

For example, if you deposit $1,000 in an account that pays 1 percent annual interest, you'd earn $10 in interest after a year. Thanks to compound interest, in the second year you'd earn 1 percent on $1,010 — the principal plus the interest, or $10.10 in interest payouts for the year.

How long will it take $4000 to grow to $9000 if it is invested at 7% compounded monthly? ›

Expert-Verified Answer

- At 7% compounded monthly, it will take approximately 11.6 years for $4,000 to grow to $9,000. - At 6% compounded quarterly, it will take approximately 13.6 years for $4,000 to grow to $9,000.

How long will it take $10,000 to reach $50,000 if it earns 10% annual interest compounded semiannually? ›

Expert-Verified Answer

It will take approximately 16.5 years for $10,000 to reach $50,000 with a 10% annual interest rate compounded semiannually.

How long would it take $1500 to grow to $2000 at a simple interest rate of 3? ›

Example 5: What rate of simple interest is needed to get $7000 to grow to $10000 in 5 years? Therefore a rate of 8.57% is needed. Example 6: How long would it take $1500 to grow to $2000 at a simple interest rate of 3%? It would take approximately 11 years.

What is the secret formula for compound interest? ›

Compound Interest Formula Derivation

The simple interest on principle at the end of 1st time period = P*r/100. Total amount after 1st time period = P+P*r/100 = P(1+r/100). Total amount becomes the new principle. Total amount after 2nd time period = P(1+r/100)x(r/100) + P(1+r/100) + P(1+r/100)x(r/100) = P(1+r/100)2.

What is the short trick for 3 year compound interest? ›

principal (3rd yr) = Amount (2nd yr) = Principal(2nd yr)+Interest(2nd yr) = 1100+110 = 1210 CI (3rd yr) = (1210×10×1)/100 = 121 Hence total CI for 3yrs = 100+110+121 = 331 Amount after 3 yrs = 1331 Interest is always calculated on the Principal. But in the case of CI, the Principal is get changed every year.

What is the formula for compound interest with example? ›

The formula for compound interest is A=P(1+rn)nt, where A represents the final balance after the interest has been calculated for the time, t, in years, on a principal amount, P, at an annual interest rate, r. The number of times in the year that the interest is compounded is n.

How to solve compound interest step by step? ›

You can use the following formula to calculate compound interest:FV = P ( 1 + [ r / n ] ) ^ ntIn this formula:
  1. FV: future value.
  2. P: principal.
  3. r: interest rate.
  4. n: number of compounding periods per year (yearly = 1, monthly = 12, weekly = 52, daily = 365)
  5. t: time in years of the investment or loan.
Jul 2, 2024

What is a real life example of compound interest? ›

Let's say you have $1,000 in a savings account that earns 5% in annual interest. In year one, you'd earn $50, giving you a new balance of $1,050. In year two, you would earn 5% on the larger balance of $1,050, which is $52.50—giving you a new balance of $1,102.50 at the end of year two.

What will be the compound interest on $25,000 after 3 years at 12 per annum? ›

25000 after 3 years at the rate of 12 per cent p.a.? Rs. 10123.20.

What is a compound formula example? ›

Chemical Formulas of Compounds

For example, H₂O is the chemical formula for water. It shows that a molecule of water has two hydrogen atoms and one oxygen atom. 6 carbon atoms, 12 hydrogen atoms, and 6 oxygen atoms form glucose.

What is the formula for simple compound interest? ›

Interest Formulas for SI and CI
Formulas for Interests (Simple and Compound)
SI FormulaS.I. = Principal × Rate × Time
CI FormulaC.I. = Principal (1 + Rate)Time − Principal

What is the compound interest on RS 2500 for 2 years at rate of interest 4% per annum? ›

2500 for 2 years at rate of interest 4% per annum? ​ Answer: Compound interest received on Rs 2500 for 2 year at the rate of 4v% per annum compounded annually is Rs 204.

Top Articles
Our Experts Offer the Ultimate Guide to the Chargeback Process
Third-party sites & apps with access to your child’s account
English Bulldog Puppies For Sale Under 1000 In Florida
Katie Pavlich Bikini Photos
Gamevault Agent
Pieology Nutrition Calculator Mobile
Hocus Pocus Showtimes Near Harkins Theatres Yuma Palms 14
Hendersonville (Tennessee) – Travel guide at Wikivoyage
Compare the Samsung Galaxy S24 - 256GB - Cobalt Violet vs Apple iPhone 16 Pro - 128GB - Desert Titanium | AT&T
Vardis Olive Garden (Georgioupolis, Kreta) ✈️ inkl. Flug buchen
Craigslist Dog Kennels For Sale
Things To Do In Atlanta Tomorrow Night
Non Sequitur
Crossword Nexus Solver
How To Cut Eelgrass Grounded
Pac Man Deviantart
Alexander Funeral Home Gallatin Obituaries
Energy Healing Conference Utah
Geometry Review Quiz 5 Answer Key
Hobby Stores Near Me Now
Icivics The Electoral Process Answer Key
Allybearloves
Bible Gateway passage: Revelation 3 - New Living Translation
Yisd Home Access Center
Pearson Correlation Coefficient
Home
Shadbase Get Out Of Jail
Gina Wilson Angle Addition Postulate
Celina Powell Lil Meech Video: A Controversial Encounter Shakes Social Media - Video Reddit Trend
Walmart Pharmacy Near Me Open
Marquette Gas Prices
A Christmas Horse - Alison Senxation
Ou Football Brainiacs
Access a Shared Resource | Computing for Arts + Sciences
Vera Bradley Factory Outlet Sunbury Products
Pixel Combat Unblocked
Movies - EPIC Theatres
Cvs Sport Physicals
Mercedes W204 Belt Diagram
Mia Malkova Bio, Net Worth, Age & More - Magzica
'Conan Exiles' 3.0 Guide: How To Unlock Spells And Sorcery
Teenbeautyfitness
Where Can I Cash A Huntington National Bank Check
Topos De Bolos Engraçados
Sand Castle Parents Guide
Gregory (Five Nights at Freddy's)
Grand Valley State University Library Hours
Hello – Cornerstone Chapel
Stoughton Commuter Rail Schedule
Nfsd Web Portal
Selly Medaline
Latest Posts
Article information

Author: Sen. Ignacio Ratke

Last Updated:

Views: 5467

Rating: 4.6 / 5 (76 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Sen. Ignacio Ratke

Birthday: 1999-05-27

Address: Apt. 171 8116 Bailey Via, Roberthaven, GA 58289

Phone: +2585395768220

Job: Lead Liaison

Hobby: Lockpicking, LARPing, Lego building, Lapidary, Macrame, Book restoration, Bodybuilding

Introduction: My name is Sen. Ignacio Ratke, I am a adventurous, zealous, outstanding, agreeable, precious, excited, gifted person who loves writing and wants to share my knowledge and understanding with you.