Adaptive Response, Evidence of Cross-Resistance and Its Potential Clinical Use (2024)

1. Halliwell B., Gutteridge J.M.C. Free Radicals in Biology and Medicine. 4th ed. Oxford University Press; Oxford, UK: 2007. Cellular Responses to Oxidative Stress: Adaptation, Damage, Repair, Senescence and Death; pp. 187–267. [Google Scholar]

2. Portt L., Norman G., Clapp C., Greenwood M., Greenwood M.T. Anti-Apoptosis and cell survival: A review. Biochim. Biophys. Acta. 2011;1813:238–259. [PubMed] [Google Scholar]

3. Fulda S., Gorman A.M., Hori O., Samali A. Cellular stress responses: Cell survival and cell death. Int. J. Cell Biol. 2010;2010 doi:10.1155/2010/214074. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Halliwell B. The antioxidant paradox. Lancet. 2000;355:1179–1180. [PubMed] [Google Scholar]

5. Nipic D., Pirc A., Banic B., Suput D., Milisav I. Preapoptotic cell stress response of primary hepatocytes. Hepatology. 2010;51:2140–2151. [PubMed] [Google Scholar]

6. Banič B., Nipič D., Suput D., Milisav I. DMSO modulates the pathway of apoptosis triggering. Cell Mol. Biol. Lett. 2011;16:328–341. [PMC free article] [PubMed] [Google Scholar]

7. Fulda S. Evasion of apoptosis as a cellular stress response in cancer. Int. J. Cell Biol. 2010;2010 doi:10.1155/2010/370835. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Kourtis N., Tavernarakis N. Cellular stress response pathways and ageing: Intricate molecular relationships. EMBO J. 2011;30:2520–2531. [PMC free article] [PubMed] [Google Scholar]

9. Stancevic B., Kolesnick R. Ceramide-Rich platforms in transmembrane signaling. FEBS Lett. 2010;584:1728–1740. [PMC free article] [PubMed] [Google Scholar]

10. Nikolova-Karakashian M.N., Rozenova K.A. Ceramide in stress response. Adv. Exp. Med. Biol. 2010;688:86–108. [PMC free article] [PubMed] [Google Scholar]

11. Van Brocklyn J.R., Williams J.B. The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: Oxidative stress and the seesaw of cell survival and death. Comp. Biochem. Physiol. Biochem. Mol. Biol. 2012;163:26–36. [PubMed] [Google Scholar]

12. Gerczuk P.Z., Kloner R.A. An update on cardioprotection: A review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. J. Am. Coll. Cardiol. 2012;59:969–978. [PubMed] [Google Scholar]

13. Ray P.D., Huang B.W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24:981–990. [PMC free article] [PubMed] [Google Scholar]

14. Milisav I. Cellular Stress Responses. In: Wislet-Gendebien Sabine., editor. Advances in Regenerative Medicine. InTech; Rijeka, Croatia: 2011. pp. 215–232. [Google Scholar]

15. Shang F., Taylor A. Ubiquitin-Proteasome pathway and cellular responses to oxidative stress. Free Radic. Biol. Med. 2011;51:5–16. [PMC free article] [PubMed] [Google Scholar]

16. Baumeister W., Walz J., Zühl F., Seemüller E. The proteasome: Paradigm of a self-compartmentalizing protease. Cell. 1998;92:367–380. [PubMed] [Google Scholar]

17. Strickland E., Hakala K., Thomas P.J., DeMartino G.N. Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26S proteasome. J. Biol. Chem. 2000;275:5565–5572. [PubMed] [Google Scholar]

18. Pacifici R.E., Salo D.C., Davies K.J. Macroxyproteinase (M.O.P.): A 670 kDa proteinase complex that degrades oxidatively denatured proteins in red blood cells. Free Radic. Biol. Med. 1989;7:521–536. [PubMed] [Google Scholar]

19. Salo D.C., Pacifici R.E., Lin S.W., Giulivi C., Davies K.J. Superoxide dismutase undergoes proteolysis and fragmentation following oxidative modification and inactivation. J. Biol. Chem. 1990;265:11919–11927. [PubMed] [Google Scholar]

20. Shringarpure R., Grune T., Mehlhase J., Davies K.J. Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J. Biol. Chem. 2003;278:311–318. [PubMed] [Google Scholar]

21. Ferrington D.A., Sun H., Murray K.K., Costa J., Williams T.D., Bigelow D.J., Squier T.C. Selective degradation of oxidized calmodulin by the 20S proteasome. J. Biol. Chem. 2001;276:937–943. [PubMed] [Google Scholar]

22. Balog E.M., Lockamy E.L., Thomas D.D., Ferrington D.A. Site-Specific methionine oxidation initiates calmodulin degradation by the 20S proteasome. Biochemistry. 2009;48:3005–3016. [PMC free article] [PubMed] [Google Scholar]

23. Grune T., Reinheckel T., Davies K.J. Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome. J. Biol. Chem. 1996;271:15504–15509. [PubMed] [Google Scholar]

24. Grune T., Merker K., Jung T., Sitte N., Davies K.J. Protein oxidation and degradation during postmitotic senescence. Free Radic. Biol. Med. 2005;39:1208–1215. [PubMed] [Google Scholar]

25. Grune T., Reinheckel T., Joshi M., Davies K.J. Proteolysis in cultured liver epithelial cells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome. J. Biol. Chem. 1995;270:2344–2351. [PubMed] [Google Scholar]

26. Grune T., Blasig I.E., Sitte N., Roloff B., Haseloff R., Davies K.J. Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J. Biol. Chem. 1998;273:10857–10862. [PubMed] [Google Scholar]

27. Sitte N., Merker K., von Zglinicki T., Grune T., Davies K.J. Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: Part I—Effects of proliferative senescence. FASEB J. 2000;14:2495–2502. [PubMed] [Google Scholar]

28. Giulivi C., Pacifici R.E., Davies K.J. Exposure of hydrophobic moieties promotes the selective degradation of hydrogen peroxide-modified hemoglobin by the multicatalytic proteinase complex, proteasome. Arch. Biochem. Biophys. 1994;311:329–341. [PubMed] [Google Scholar]

29. Davies K.J., Shringarpure R. Preferential degradation of oxidized proteins by the 20S proteasome may be inhibited in aging and in inflammatory neuromuscular diseases. Neurology. 2006;66:S93–S96. [PubMed] [Google Scholar]

30. Hershko A., Heller H., Eytan E., Reiss Y. The protein substrate binding site of the ubiquitin-protein ligase system. J. Biol. Chem. 1986;261:11992–11999. [PubMed] [Google Scholar]

31. Shang F., Nowell T.R., Jr, Taylor A. Removal of oxidatively damaged proteins from lens cells by the ubiquitin-proteasome pathway. Exp. Eye Res. 2001;73:229–238. [PubMed] [Google Scholar]

32. Dudek E.J., Shang F., Valverde P., Liu Q., Hobbs M., Taylor A. Selectivity of the ubiquitin pathway for oxidatively modified proteins: Relevance to protein precipitation diseases. FASEB J. 2005;19:1707–1709. [PubMed] [Google Scholar]

33. Iwai K., Drake S.K., Wehr N.B., Weissman A.M., LaVaute T., Minato N., Klausner R.D., Levine R.L., Rouault T.A. Iron-Dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: Implications for degradation of oxidized proteins. Proc. Natl. Acad. Sci. USA. 1998;95:4924–4928. [PMC free article] [PubMed] [Google Scholar]

34. Huang L.L., Shang F., Nowell T.R., Jr, Taylor A. Degradation of differentially oxidized alpha-crystallins in bovine lens epithelial cells. Exp. Eye Res. 1995;61:45–54. [PubMed] [Google Scholar]

35. Yamanaka K., Ishikawa H., Megumi Y., Tokunaga F., Kanie M., Rouault T.A., Morishima I., Minato N., Ishimori K., Iwai K. Identification of the ubiquitin-protein ligase that recognizes oxidized IRP2. Nat. Cell Biol. 2003;5:336–340. [PubMed] [Google Scholar]

36. Lee B.H., Lee M.J., Park S., Oh D.C., Elsasser S., Chen P.C., Gartner C., Dimova N., Hanna J., Gygi S.P., et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 2010;467:179–184. [PMC free article] [PubMed] [Google Scholar]

37. Dunten R.L., Cohen R.E. Recognition of modified forms of ribonuclease a by the ubiquitin system. J. Biol. Chem. 1989;264:16739–16747. [PubMed] [Google Scholar]

38. Pacifici R.E., Kono Y., Davies K.J. Hydrophobicity as the signal for selective degradation of hydroxyl radical-modified hemoglobin by the multicatalytic proteinase complex, proteasome. J. Biol. Chem. 1993;268:15405–15411. [PubMed] [Google Scholar]

39. Zetterberg M., Zhang X., Taylor A., Liu B., Liang J.J., Shang F. Glutathiolation enhances the degradation of gammaC-crystallin in lens and reticulocyte lysates, partially via the ubiquitin-proteasome pathway. Invest. Ophthalmol. Vis. Sci. 2006;47:3467–3473. [PMC free article] [PubMed] [Google Scholar]

40. Lasch P., Petras T., Ullrich O., Backmann J., Naumann D., Grune T. Hydrogen peroxide-induced structural alterations of RNAse A. J. Biol. Chem. 2001;276:9492–9502. [PubMed] [Google Scholar]

41. Villeneuve N.F., Lau A., Zhang D.D. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: An insight into cullin-ring ubiquitin ligases. Antioxid. Redox Signal. 2010;13:1699–1712. [PMC free article] [PubMed] [Google Scholar]

42. Nguyen T., Sherratt P.J., Huang H.C., Yang C.S., Pickett C.B. Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J. Biol. Chem. 2003;278:4536–4541. [PubMed] [Google Scholar]

43. Fengsrud M., Roos N., Berg T., Liou W., Slot J.W., Seglen P.O. Ultrastructural and immunocytochemical characterization of autophagic vacuoles in isolated hepatocytes: Effects of vinblastine and asparagine on vacuole distributions. Exp. Cell Res. 1995;221:504–519. [PubMed] [Google Scholar]

44. Orsi A., Polson H.E., Tooze S.A. Membrane trafficking events that partake in autophagy. Curr. Opin. Cell Biol. 2010;22:150–156. [PubMed] [Google Scholar]

45. Kirkin V., Dikic I. Ubiquitin networks in cancer. Curr. Opin. Genet. Dev. 2011;21:21–28. [PubMed] [Google Scholar]

46. Mijaljica D., Prescott M., Devenish R.J. Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum. Autophagy. 2011;7:673–682. [PubMed] [Google Scholar]

47. Li W.W., Li J., Bao J.K. Microautophagy: Lesser-Known self-eating. Cell Mol. Life Sci. 2012;69:1125–1136. [PubMed] [Google Scholar]

48. Li W., Yang Q., Mao Z. Chaperone-Mediated autophagy: Machinery, regulation and biological consequences. Cell Mol. Life Sci. 2011;68:749–763. [PubMed] [Google Scholar]

49. Kaspar J.W., Niture S.K., Jaiswal A.K. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med. 2009;47:1304–1309. [PMC free article] [PubMed] [Google Scholar]

50. Venugopal R., Jaiswal A.K. Nrf1 and Nrf2 positively and c-Fos and fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H: quinone oxidoreductase1 gene. Proc. Natl. Acad. Sci. USA. 1996;93:14960–14965. [PMC free article] [PubMed] [Google Scholar]

51. Wild A.C., Moinova H.R., Mulcahy R.T. Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J. Biol. Chem. 1999;274:33627–33636. [PubMed] [Google Scholar]

52. Nguyen T., Huang H.C., Pickett C.B. Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. J. Biol. Chem. 2000;275:15466–15473. [PubMed] [Google Scholar]

53. Dikic I., Wakatsuki S., Walters K.J. Ubiquitin-binding domains—From structures to functions. Nat. Rev. Mol. Cell Biol. 2009;10:659–671. [PMC free article] [PubMed] [Google Scholar]

54. Moscat J., Diaz-Meco M.T., Wooten M.W. Signal integration and diversification through the p62 scaffold protein. Trends Biochem. Sci. 2007;32:95–100. [PubMed] [Google Scholar]

55. Korolchuk V.I., Saiki S., Lichtenberg M., Siddiqi F.H., Roberts E.A., Imarisio S., Jahreiss L., Sarkar S., Futter M., Menzies F.M., et al. Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 2011;13:453–460. [PMC free article] [PubMed] [Google Scholar]

56. Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009;417:1–13. [PMC free article] [PubMed] [Google Scholar]

57. Shacka J.J., Roth K.A., Zhang J. The autophagy-lysosomal degradation pathway: Role in neurodegenerative disease and therapy. Front. Biosci. 2008;13:718–736. [PubMed] [Google Scholar]

58. Lee J., Giordano S., Zhang J. Autophagy, mitochondria and oxidative stress: Cross-Talk and redox signalling. Biochem. J. 2012;441:523–540. [PMC free article] [PubMed] [Google Scholar]

59. Sengupta S., Peterson T.R., Sabatini D.M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell. 2010;40:310–322. [PMC free article] [PubMed] [Google Scholar]

60. De Duve C., Wattiaux R. Functions of lysosomes. Annu. Rev. Physiol. 1966;28:435–492. [PubMed] [Google Scholar]

61. Nowikovsky K., Reipert S., Devenish R.J., Schweyen R.J. Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ. 2007;14:1647–1656. [PubMed] [Google Scholar]

62. Roberts P., Mosh*tch-Moshkovitz S., Kvam E., O’Toole E., Winey M., Goldfarb D.S. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol. Biol. Cell. 2003;14:129–141. [PMC free article] [PubMed] [Google Scholar]

63. Krick R., Muehe Y., Prick T., Bremer S., Schlotterhose P., Eskelinen E.L., Millen J., Goldfarb D.S., Thumm M. Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol. Biol. Cell. 2008;19:4492–4505. [PMC free article] [PubMed] [Google Scholar]

64. Sakai Y., Koller A., Rangell L.K., Keller G.A., Subramani S. Peroxisome degradation by microautophagy in Pichia pastoris: Identification of specific steps and morphological intermediates. J. Cell Biol. 1998;141:625–636. [PMC free article] [PubMed] [Google Scholar]

65. Dunn W.A., Jr, Cregg J.M., Kiel J.A., van der Klei I.J., Oku M., Sakai Y., Sibirny A.A., Stasyk O.V., Veenhuis M. Pexophagy: The selective autophagy of peroxisomes. Autophagy. 2005;1:75–83. [PubMed] [Google Scholar]

66. Dubouloz F., Deloche O., Wanke V., Cameroni E., de Virgilio C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol. Cell. 2005;19:15–26. [PubMed] [Google Scholar]

67. Agarraberes F.A., Dice J.F. A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J. Cell Sci. 2001;114:2491–2499. [PubMed] [Google Scholar]

68. Chiang H.L., Terlecky S.R., Plant C.P., Dice J.F. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science. 1989;246:382–385. [PubMed] [Google Scholar]

69. Cuervo A.M., Dice J.F. A receptor for the selective uptake and degradation of proteins by lysosomes. Science. 1996;273:501–503. [PubMed] [Google Scholar]

70. Dice J.F., Chiang H.L., Spencer E.P., Backer J.M. Regulation of catabolism of microinjected ribonuclease A. Identification of residues 7–11 as the essential pentapeptide. J. Biol. Chem. 1986;261:6853–6859. [PubMed] [Google Scholar]

71. Chiang H.L., Dice J.F. Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J. Biol. Chem. 1988;263:6797–6805. [PubMed] [Google Scholar]

72. Finn P.F., Mesires N.T., Vine M., Dice J.F. Effects of small molecules on chaperone-mediated autophagy. Autophagy. 2005;1:141–145. [PubMed] [Google Scholar]

73. Kaushik S., Massey A.C., Mizushima N., Cuervo A.M. Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol. Biol. Cell. 2008;19:2179–2192. [PMC free article] [PubMed] [Google Scholar]

74. Wing S.S., Chiang H.L., Goldberg A.L., Dice J.F. Proteins containing peptide sequences related to Lys-Phe-Glu-Arg-Gln are selectively depleted in liver and heart, but not skeletal muscle, of fasted rats. Biochem. J. 1991;275:165–169. [PMC free article] [PubMed] [Google Scholar]

75. Kiffin R., Christian C., Knecht E., Cuervo A.M. Activation of chaperone-mediated autophagy during oxidative stress. Mol. Biol. Cell. 2004;15:4829–4840. [PMC free article] [PubMed] [Google Scholar]

76. Cuervo A.M., Dice J.F. Age-Related decline in chaperone-mediated autophagy. J. Biol. Chem. 2000;275:31505–31513. [PubMed] [Google Scholar]

77. Spriggs K.A., Bushell M., Willis A.E. Translational regulation of gene expression during conditions of cell stress. Mol. Cell. 2010;40:228–237. [PubMed] [Google Scholar]

78. Buchberger A., Bukau B., Sommer T. Protein quality control in the cytosol and the endoplasmic reticulum: Brothers in arms. Mol. Cell. 2010;40:238–252. [PubMed] [Google Scholar]

79. Leung A.K., Sharp P.A. MicroRNA functions in stress responses. Mol. Cell. 2010;40:205–215. [PMC free article] [PubMed] [Google Scholar]

80. Akerfelt M., Morimoto R.I., Sistonen L. Heat shock factors: Integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 2010;11:545–555. [PMC free article] [PubMed] [Google Scholar]

81. Biamonti G., Vourc’h C. Nuclear stress bodies. Cold Spring Harb. Perspect. Biol. 2010;2 doi:10.1101/cshperspect.a000695. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Li Y., Liu L., Tollefsbol T.O. Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression. FASEB J. 2010;24:1442–1453. [PMC free article] [PubMed] [Google Scholar]

83. Cohen H.Y., Miller C., Bitterman K.J., Wall N.R., Hekking B., Kessler B., Howitz K.T., Gorospe M., de Cabo R., Sinclair D.A. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305:390–392. [PubMed] [Google Scholar]

84. Speidel D. Transcription-Independent p53 apoptosis: An alternative route to death. Trends Cell Biol. 2010;20:14–24. [PubMed] [Google Scholar]

85. Ak P., Levine A.J. p53 and NF-κB: Different strategies for responding to stress lead to a functional antagonism. FASEB J. 2010;24:3643–3652. [PubMed] [Google Scholar]

86. Brunet A., Bonni A., Zigmond M.J., Lin M.Z., Juo P., Hu L.S., Anderson M.J., Arden K.C., Blenis J., Greenberg M.E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857–868. [PubMed] [Google Scholar]

87. Luo J., Nikolaev A.Y., Imai S., Chen D., Su F., Shiloh A., Guarente L., Gu W. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell. 2001;107:137–148. [PubMed] [Google Scholar]

88. Langley E., Pearson M., Faretta M., Bauer U.M., Frye R.A., Minucci S., Pelicci P.G., Kouzarides T. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 2002;21:2383–2396. [PMC free article] [PubMed] [Google Scholar]

89. Vaziri H., Dessain S.K., Ng Eaton E., Imai S.I., Frye R.A., Pandita T.K., Guarente L., Weinberg R.A. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107:149–159. [PubMed] [Google Scholar]

90. Motta M.C., Divecha N., Lemieux M., Kamel C., Chen D., Gu W., Bultsma Y., McBurney M., Guarente L. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116:551–563. [PubMed] [Google Scholar]

91. Frescas D., Valenti L., Accili D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J. Biol. Chem. 2005;280:20589–20595. [PubMed] [Google Scholar]

92. Tabas I., Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 2011;13:184–190. [PMC free article] [PubMed] [Google Scholar]

93. Halliwell B., Gutteridge J.M.C. Free Radicals in Biology and Medicine. 4th ed. Oxford University Press; Oxford, UK: 2007. Antioxidant Defenses: Endogenous and Diet Derived; pp. 79–186. [Google Scholar]

94. Poljsak B. Strategies for reducing or preventing the generation of oxidative stress. Oxid. Med. Cell Longev. 2011;2011:194586:1–194586:15. [PMC free article] [PubMed] [Google Scholar]

95. Cheeseman K.H., Slater T.F. An introduction to free radical biochemistry. Br. Med. Bull. 1993;49:481–493. [PubMed] [Google Scholar]

96. Chipuk J.E., Moldoveanu T., Llambi F., Parsons M.J., Green D.R. The BCL-2 family reunion. Mol. Cell. 2010;37:299–310. [PMC free article] [PubMed] [Google Scholar]

97. Llambi F., Green D.R. Apoptosis and oncogenesis: Give and take in the BCL-2 family. Curr. Opin. Genet. Dev. 2011;21:12–20. [PMC free article] [PubMed] [Google Scholar]

98. Martinou J.C., Youle R.J. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell. 2011;21:92–101. [PMC free article] [PubMed] [Google Scholar]

99. Bajwa N., Liao C., Nikolovska-Coleska Z. Inhibitors of the anti-apoptotic Bcl-2 proteins: A patent review. Expert Opin. Ther. Pat. 2012;22:37–55. [PMC free article] [PubMed] [Google Scholar]

100. Chen Z.X., Pervaiz S. BCL-2: Pro-Or anti-oxidant? Front. Biosci. (Elite Ed) 2009;1:263–268. [PubMed] [Google Scholar]

101. Laplante M., Sabatini D.M. mTOR Signaling. Cold Spring Harb. Perspect. Biol. 2012;4 doi:10.1101/cshperspect.a011593. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Ma X.M., Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 2009;10:307–318. [PubMed] [Google Scholar]

103. Laplante M., Sabatini D.M. An emerging role of mTOR in lipid biosynthesis. Curr. Biol. 2009;19:R1046–R1052. [PMC free article] [PubMed] [Google Scholar]

104. Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell. 2012;149:274–293. [PMC free article] [PubMed] [Google Scholar]

105. McCormick M.A., Tsai S.Y., Kennedy B.K. TOR and ageing: A complex pathway for a complex process. Philos. Trans. R. Soc. Lond Biol. Sci. 2011;366:17–27. [PMC free article] [PubMed] [Google Scholar]

106. Yu L., McPhee C.K., Zheng L., Mardones G.A., Rong Y., Peng J., Mi N., Zhao Y., Liu Z., Wan F., et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 2010;465:942–946. [PMC free article] [PubMed] [Google Scholar]

107. Sancak Y., Bar-Peled L., Zoncu R., Markhard A.L., Nada S., Sabatini D.M. Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141:290–303. [PMC free article] [PubMed] [Google Scholar]

108. Dames S.A., Mulet J.M., Rathgeb-Szabo K., Hall M.N., Grzesiek S. The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J. Biol. Chem. 2005;280:20558–20564. [PubMed] [Google Scholar]

109. Scherz-Shouval R., Shvets E., Fass E., Shorer H., Gil L., Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007;26:1749–1760. [PMC free article] [PubMed] [Google Scholar]

110. Kirkland R.A., Saavedra G.M., Franklin J.L. Rapid activation of antioxidant defenses by nerve growth factor suppresses reactive oxygen species during neuronal apoptosis: Evidence for a role in cytochrome c redistribution. J. Neurosci. 2007;27:11315–11326. [PMC free article] [PubMed] [Google Scholar]

111. Kirkland R.A., Adibhatla R.M., Hatcher J.F., Franklin J.L. Loss of cardiolipin and mitochondria during programmed neuronal death: Evidence of a role for lipid peroxidation and autophagy. Neuroscience. 2002;115:587–602. [PubMed] [Google Scholar]

112. Chen Y., Azad M.B., Gibson S.B. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 2009;16:1040–1052. [PubMed] [Google Scholar]

113. Feng Z. p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb. Perspect. Biol. 2010;2 doi:10.1101/cshperspect.a001057. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Toker A., Newton A.C. Cellular signaling: Pivoting around PDK-1. Cell. 2000;103:185–188. [PubMed] [Google Scholar]

115. Datta S.R., Dudek H., Tao X., Masters S., Fu H., Gotoh Y., Greenberg M.E. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–241. [PubMed] [Google Scholar]

116. Verdin E., Hirschey M.D., Finley L.W., Haigis M.C. Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling. Trends Biochem. Sci. 2010;35:669–675. [PMC free article] [PubMed] [Google Scholar]

117. Lin S.J., Defossez P.A., Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000;289:2126–2128. [PubMed] [Google Scholar]

118. Bordone L., Cohen D., Robinson A., Motta M.C., van Veen E., Czopik A., Steele A.D., Crowe H., Marmor S., Luo J., et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell. 2007;6:759–767. [PubMed] [Google Scholar]

119. Kanfi Y., Peshti V., Gozlan Y.M., Rathaus M., Gil R., Cohen H.Y. Regulation of SIRT1 protein levels by nutrient availability. FEBS Lett. 2008;582:2417–2423. [PubMed] [Google Scholar]

120. Crujeiras A.B., Parra D., Goyenechea E., Martínez J.A. Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction. Eur. J. Clin. Invest. 2008;38:672–678. [PubMed] [Google Scholar]

121. Wakeling L.A., Ions L.J., Ford D. Could Sirt1-mediated epigenetic effects contribute to the longevity response to dietary restriction and be mimicked by other dietary interventions? Age (Dordr) 2009;31:327–341. [PMC free article] [PubMed] [Google Scholar]

122. Schilling M.M., Oeser J.K., Boustead J.N., Flemming B.P., O’Brien R.M. Gluconeogenesis: Re-evaluating the FOXO1-PGC-1alpha connection. Nature. 2006;443:E10–E11. [PubMed] [Google Scholar]

123. Vega R.B., Huss J.M., Kelly D.P. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell Biol. 2000;20:1868–1876. [PMC free article] [PubMed] [Google Scholar]

124. Kelly D.P., Scarpulla R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004;18:357–368. [PubMed] [Google Scholar]

125. Vogelstein B., Lane D., Levine A.J. Surfing the p53 network. Nature. 2000;408:307–310. [PubMed] [Google Scholar]

126. Levine A.J., Feng Z., Mak T.W., You H., Jin S. Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev. 2006;20:267–275. [PubMed] [Google Scholar]

127. Buckbinder L., Talbott R., Velasco-Miguel S., Takenaka I., Faha B., Seizinger B.R., Kley N. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature. 1995;377:646–649. [PubMed] [Google Scholar]

128. Stambolic V., MacPherson D., Sas D., Lin Y., Snow B., Jang Y., Benchimol S., Mak T.W. Regulation of PTEN transcription by p53. Mol. Cell. 2001;8:317–325. [PubMed] [Google Scholar]

129. Feng Z., Zhang H., Levine A.J., Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl. Acad. Sci. USA. 2005;102:8204–8209. [PMC free article] [PubMed] [Google Scholar]

130. Ditch S., Paull T.T. The ATM protein kinase and cellular redox signaling: Beyond the DNA damage response. Trends Biochem. Sci. 2012;37:15–22. [PMC free article] [PubMed] [Google Scholar]

131. Barzilai A., Rotman G., Shiloh Y. ATM deficiency and oxidative stress: A new dimension of defective response to DNA damage. DNA Repair. (Amst) 2002;1:3–25. [PubMed] [Google Scholar]

132. Yi M., Rosin M.P., Anderson C.K. Response of fibroblast cultures from ataxia-telangiectasia patients to oxidative stress. Cancer Lett. 1990;54:43–50. [PubMed] [Google Scholar]

133. Ward A.J., Olive P.L., Burr A.H., Rosin M.P. Response of fibroblast cultures from ataxia-telangiectasia patients to reactive oxygen species generated during inflammatory reactions. Environ. Mol. Mutagen. 1994;24:103–111. [PubMed] [Google Scholar]

134. Shackelford R.E., Innes C.L., Sieber S.O., Heinloth A.N., Leadon S.A., Paules R.S. The ataxia telangiectasia gene product is required for oxidative stress-induced G1 and G2 checkpoint function in human fibroblasts. J. Biol. Chem. 2001;276:21951–21959. [PubMed] [Google Scholar]

135. Guo Z., Kozlov S., Lavin M.F., Person M.D., Paull T.T. ATM activation by oxidative stress. Science. 2010;330:517–521. [PubMed] [Google Scholar]

136. Shaw R.J. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol. (Oxf) 2009;196:65–80. [PMC free article] [PubMed] [Google Scholar]

137. Peretz S., Jensen R., Baserga R., Glazer P.M. ATM-Dependent expression of the insulin-like growth factor-I receptor in a pathway regulating radiation response. Proc. Natl. Acad. Sci. USA. 2001;98:1676–1681. [PMC free article] [PubMed] [Google Scholar]

138. Shahrabani-Gargir L., Pandita T.K., Werner H. Ataxia-Telangiectasia mutated gene controls insulin-like growth factor I receptor gene expression in a deoxyribonucleic acid damage response pathway via mechanisms involving zinc-finger transcription factors Sp1 and WT1. Endocrinology. 2004;145:5679–5687. [PubMed] [Google Scholar]

139. Armata H.L., Golebiowski D., Jung D.Y., Ko H.J., Kim J.K., Sluss H.K. Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis. Mol. Cell Biol. 2010;30:5787–5794. [PMC free article] [PubMed] [Google Scholar]

140. Alexander A., Cai S.L., Kim J., Nanez A., Sahin M., MacLean K.H., Inoki K., Guan K.L., Shen J., Person M.D., et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl. Acad. Sci. USA. 2010;107:4153–4158. [PMC free article] [PubMed] [Google Scholar]

141. Cam H., Easton J.B., High A., Houghton P.J. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1α Mol. Cell. 2010;40:509–520. [PMC free article] [PubMed] [Google Scholar]

142. Mattson M.P. Hormesis defined. Ageing Res. Rev. 2008;7:1–7. [PMC free article] [PubMed] [Google Scholar]

143. Spitz D.R., Dewey W.C., Li G.C. Hydrogen peroxide or heat shock induces resistance to hydrogen peroxide in Chinese hamster fibroblasts. J. Cell Physiol. 1987;131:364–373. [PubMed] [Google Scholar]

144. Laval F. Pretreatment with oxygen species increases the resistance of mammalian cells to hydrogen peroxide and gamma-rays. Mutat. Res. 1988;201:73–79. [PubMed] [Google Scholar]

145. Cortés F., Dominguez I., Piñero J., Mateos J.C. Adaptive response in human lymphocytes conditioned with hydrogen peroxide before irradiation with X-rays. Mutagenesis. 1990;5:555–557. [PubMed] [Google Scholar]

146. Rattan S.I. Hormesis in aging. Aging Res. Rev. 2008;7:63–78. [PubMed] [Google Scholar]

147. Li F., Mao H.P., Ruchalski K.L., Wang Y.H., Choy W., Schwartz J.H., Borkan S.C. Heat stress prevents mitochondrial injury in ATP-depleted renal epithelial cells. Am. J. Physiol. Cell Physiol. 2002;283:C917–C926. [PubMed] [Google Scholar]

148. Lithgow G.J., White T.M., Melov S., Johnson T.E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. USA. 1995;92:7540–7544. [PMC free article] [PubMed] [Google Scholar]

149. Le Bourg E. A cold stress applied at various ages can increase resistance to heat and fungal infection in aged Drosophila melanogaster flies. Biogerontology. 2011;12:185–193. [PubMed] [Google Scholar]

150. Le Bourg E. Hormetic effects of repeated exposures to cold at young age on longevity, aging and resistance to heat or cold shocks in Drosophila melanogaster. Biogerontology. 2007;8:431–444. [PubMed] [Google Scholar]

151. Korde A.S., Pettigrew L.C., Craddock S.D., Maragos W.F. The mitochondrial uncoupler 2,4-dinitrophenol attenuates tissue damage and improves mitochondrial homeostasis following transient focal cerebral ischemia. J. Neurochem. 2005;94:1676–1684. [PubMed] [Google Scholar]

152. Liang J.F., Akaike T. Dimethyl sulfoxide induces multilayer aggregates and prolongs survival of primary cultured hepatocytes. Biotechnol. Technol. 1997;11:869–872. [Google Scholar]

153. Smith H.K., Plyley M.J., Rodgers C.D., McKee N.H. Skeletal muscle damage in the rat hindlimb following single or repeated daily bouts of downhill exercise. Int. J. Sports Med. 1997;18:94–100. [PubMed] [Google Scholar]

154. Bowles D.K., Farrar R.P., Starnes J.W. Exercise training improves cardiac function after ischemia in the isolated, working rat heart. Am. J. Physiol. 1992;263:H804–H809. [PubMed] [Google Scholar]

155. Holloszy J.O. Exercise increases average longevity of female rats despite increased food intake and no growth retardation. J. Gerontol. 1993;48:B97–B100. [PubMed] [Google Scholar]

156. Lennon S.L., Quindry J.C., French J.P., Kim S., Mehta J.L., Powers S.K. Exercise and myocardial tolerance to ischaemia-reperfusion. Acta Physiol. Scand. 2004;182:161–169. [PubMed] [Google Scholar]

157. Ramires P.R., Ji L.L. Glutathione supplementation and training increases myocardial resistance to ischemia-reperfusion in vivo. Am. J. Physiol. Heart Circ. Physiol. 2001;281:H679–H688. [PubMed] [Google Scholar]

158. Paffenbarger R.S., Jr, Hyde R.T., Wing A.L., Lee I.M., Jung D.L., Kampert J.B. The association of changes in physical-activity level and other lifestyle characteristics with mortality among men. N. Engl. J. Med. 1993;328:538–545. [PubMed] [Google Scholar]

159. Kavazis A.N. Exercise preconditioning of the myocardium. Sports Med. 2009;39:923–935. [PubMed] [Google Scholar]

160. Mary P., Sautour M., Chihib N.E., Tierny Y., Hornez J.P. Tolerance and starvation induced cross-protection against different stresses in Aeromonas hydrophila. Int. J. Food Microbiol. 2003;87:121–130. [PubMed] [Google Scholar]

161. Jenkins D.E., Schultz J.E., Matin A. Starvation-Induced cross protection against heat or H2O2 challenge in Escherichia coli. J. Bacteriol. 1988;170:3910–3914. [PMC free article] [PubMed] [Google Scholar]

162. Hartke A., Bouche S., Gansel X., Boutibonnes P., Auffray Y. Starvation-Induced stress resistance in lactococcus lactis subsp. lactis IL1403. Appl. Environ. Microbiol. 1994;60:3474–3478. [PMC free article] [PubMed] [Google Scholar]

163. Colman R.J., Anderson R.M., Johnson S.C., Kastman E.K., Kosmatka K.J., Beasley T.M., Allison D.B., Cruzen C., Simmons H.A., Kemnitz J.W., et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009;325:201–204. [PMC free article] [PubMed] [Google Scholar]

164. Willcox D.C., Willcox B.J., Todoriki H., Curb J.D., Suzuki M. Caloric restriction and human longevity: What can we learn from the Okinawans? Biogerontology. 2006;7:173–177. [PubMed] [Google Scholar]

165. Minois N. The hormetic effects of hypergravity on longevity and aging. Dose Response. 2006;4:145–154. [PMC free article] [PubMed] [Google Scholar]

166. Pribenszky C., Molnár M., Cseh S., Solti L. Improving post-thaw survival of cryopreserved mouse blastocysts by hydrostatic pressure challenge. Anim. Reprod. Sci. 2005;87:143–150. [PubMed] [Google Scholar]

167. Du Y., Lin L., Schmidt M., Bøgh I.B., Kragh P.M., Sørensen C.B., Li J., Purup S., Pribenszky C., Molnár M., et al. High hydrostatic pressure treatment of porcine oocytes before handmade cloning improves developmental competence and cryosurvival. Cloning Stem Cells. 2008;10:325–330. [PubMed] [Google Scholar]

168. Siqueira Filho E., Caixeta E.S., Pribenszky C., Molnar M., Horvath A., Harnos A., Franco M.M., Rumpf R. Vitrification of bovine blastocysts pretreated with sublethal hydrostatic pressure stress: Evaluation of post-thaw in vitro development and gene expression. Reprod. Fertil. Dev. 2011;23:585–590. [PubMed] [Google Scholar]

169. Huang S.Y., Pribenszky C., Kuo Y.H., Teng S.H., Chen Y.H., Chung M.T., Chiu Y.F. Hydrostatic pressure pre-treatment affects the protein profile of boar sperm before and after freezing-thawing. Anim. Reprod. Sci. 2009;112:136–149. [PubMed] [Google Scholar]

170. Pribenszky C., Horváth A., Végh L., Huang S.Y., Kuo Y.H., Szenci O. Stress preconditioning of boar spermatozoa: A new approach to enhance sem*n quality. Reprod. Domest. Anim. 2011;46:26–30. [PubMed] [Google Scholar]

171. Torii T., Miyazawa M., Koyama I. Effect of continuous application of shear stress on liver tissue: Continuous application of appropriate shear stress has advantage in protection of liver tissue. Transplant. Proc. 2005;37:4575–4578. [PubMed] [Google Scholar]

172. Rhee S.G. Redox signaling: Hydrogen peroxide as intracellular messenger. Exp. Mol. Med. 1999;31:53–59. [PubMed] [Google Scholar]

173. Lu D., Maulik N., Moraru I.I., Kreutzer D.L., Das D.K. Molecular adaptation of vascular endothelial cells to oxidative stress. Am. J. Physiol. 1993;264:C715–7C22. [PubMed] [Google Scholar]

174. Sen Gupta S., Bhattacharjee S.B. Induction of repair functions by hydrogen peroxide in Chinese hamster cells. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1988;53:935–942. [PubMed] [Google Scholar]

175. Sciandra J.J., Subjeck J.R., Hughes C.S. Induction of glucose-regulated proteins during anaerobic exposure and of heat-shock proteins after reoxygenation. Proc. Natl. Acad. Sci. USA. 1984;81:4843–4847. [PMC free article] [PubMed] [Google Scholar]

176. Currie R.W. Effects of ischemia and perfusion temperature on the synthesis of stress-induced (heat shock) proteins in isolated and perfused rat hearts. J. Mol. Cell Cardiol. 1987;19:795–808. [PubMed] [Google Scholar]

177. Turrens J.F., Crapo J.D., Freeman B.A. Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase. J. Clin. Invest. 1984;73:87–95. [PMC free article] [PubMed] [Google Scholar]

178. Gille J.J., Joenje H. Chromosomal instability and progressive loss of chromosomes in HeLa cells during adaptation to hyperoxic growth conditions. Mutat. Res. 1989;219:225–230. [PubMed] [Google Scholar]

179. Kurapati R., Passananti H.B., Rose M.R., Tower J. Increased hsp22 RNA levels in Drosophila lines genetically selected for increased longevity. J. Gerontol. Biol. Sci. Med. Sci. 2000;55:B552–B559. [PubMed] [Google Scholar]

180. Morrow G., Battistini S., Zhang P., Tanguay R.M. Decreased lifespan in the absence of expression of the mitochondrial small heat shock protein Hsp22 in Drosophila. J. Biol. Chem. 2004;279:43382–43385. [PubMed] [Google Scholar]

181. Préville X., Salvemini F., Giraud S., Chaufour S., Paul C., Stepien G., Ursini M.V., Arrigo A.P. Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Exp. Cell Res. 1999;247:61–78. [PubMed] [Google Scholar]

182. Lithgow G.J., Walker G.A. Stress resistance as a determinate of C. elegans lifespan. Mech. Ageing Dev. 2002;123:765–771. [PubMed] [Google Scholar]

183. Mattson M.P., Cheng A. Neurohormetic phytochemicals: Low-Dose toxins that induce adaptive neuronal stress responses. Trends Neurosci. 2006;29:632–639. [PubMed] [Google Scholar]

184. Raskin I., Ribnicky D.M., Komarnytsky S., Ilic N., Poulev A., Borisjuk N., Brinker A., Moreno D.A., Ripoll C., Yakoby N., et al. Plants and human health in the twenty-first century. Trends Biotechnol. 2002;20:522–531. [PubMed] [Google Scholar]

185. Reddy L., Odhav B., Bhoola K.D. Natural products for cancer prevention: A global perspective. Pharmacol. Ther. 2003;99:1–13. [PubMed] [Google Scholar]

186. Bravo L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998;56:317–333. [PubMed] [Google Scholar]

187. Sohal R.S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996;273:59–63. [PMC free article] [PubMed] [Google Scholar]

188. Valko M., Izakovic M., Mazur M., Rhodes C.J., Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell Biochem. 2004;266:37–56. [PubMed] [Google Scholar]

189. Barbaste M., Berké B., Dumas M., Soulet S., Delaunay J.C., Castagnino C., Arnaudinaud V., Chèze C., Vercauteren J. Dietary antioxidants, peroxidation and cardiovascular risks. J. Nutr. Health Aging. 2002;6:209–223. [PubMed] [Google Scholar]

190. Butterfield D.A., Castegna A., Drake J., Scapagnini G., Calabrese V. Vitamin E and neurodegenerative disorders associated with oxidative stress. Nutr. Neurosci. 2002;5:229–239. [PubMed] [Google Scholar]

191. Kline K., Lawson K.A., Yu W., Sanders B.G. Vitamin E and cancer. Vitam. Horm. 2007;76:435–461. [PubMed] [Google Scholar]

192. Riccioni G., Bucciarelli T., Mancini B., Di Ilio C., Capra V., D’Orazio N. The role of the antioxidant vitamin supplementation in the prevention of cardiovascular diseases. Expert Opin. Investig. Drugs. 2007;16:25–32. [PubMed] [Google Scholar]

193. Poljsak B., Milisav I. The neglected significance of “antioxidative stress” Oxid. Med. Cell Longev. 2012;2012:1–12. [PMC free article] [PubMed] [Google Scholar]

194. Soobrattee M.A., Bahorun T., Aruoma O.I. Chemopreventive actions of polyphenolic compounds in cancer. Biofactors. 2006;27:19–35. [PubMed] [Google Scholar]

195. Wu L., Noyan Ashraf M.H., Facci M., Wang R., Paterson P.G., Ferrie A., Juurlink B.H. Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proc. Natl. Acad. Sci. USA. 2004;101:7094–7099. [PMC free article] [PubMed] [Google Scholar]

196. Lee J.S., Surh Y.J. Nrf2 as a novel molecular target for chemoprevention. Cancer Lett. 2005;224:171–184. [PubMed] [Google Scholar]

197. Bautista D.M., Movahed P., Hinman A., Axelsson H.E., Sterner O., Högestätt E.D., Julius D., Jordt S.E., Zygmunt P.M. Pungent products from garlic activate the sensory ion channel TRPA1. Proc. Natl. Acad. Sci. USA. 2005;102:12248–12252. [PMC free article] [PubMed] [Google Scholar]

198. Yellon D.M., Downey J.M. Preconditioning the myocardium: From cellular physiology to clinical cardiology. Physiol. Rev. 2003;83:1113–11151. [PubMed] [Google Scholar]

199. Pong K. Ischaemic preconditioning: Therapeutic implications for stroke? Expert Opin. Ther. Targets. 2004;8:125–139. [PubMed] [Google Scholar]

200. Sun J.Z., Tang X.L., Park S.W., Qiu Y., Turrens J.F., Bolli R. Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs. J. Clin. Invest. 1996;97:562–576. [PMC free article] [PubMed] [Google Scholar]

201. Abete P., Rengo F. Mild Stress in the Aging Heart. Role of Ischemic Preconditioning. In: Le Bourg E., Rattan S., editors. Mild Stress and Healthy Aging. Springer; Heidelberg, Germany: 2010. pp. 139–156. [Google Scholar]

202. Raeburn C.D., Zimmerman M.A., Banerjee A., Cleveland C.J., Jr, Harken A.H. Surgical applications of organ preconditioning. Min. Chir. 2004;59:209–218. [PubMed] [Google Scholar]

203. Rietjens S.J., Beelen M., Koopman R., van Loon L.J., Bast A., Haenen G.R. A single session of resistance exercise induces oxidative damage in untrained men. Med. Sci. Sports Exerc. 2007;39:2145–2151. [PubMed] [Google Scholar]

204. Hollander J., Fiebig R., Gore M., Bejma J., Ookawara T., Ohno H., Ji L.L. Superoxide dismutase gene expression in skeletal muscle: Fiber-Specific adaptation to endurance training. Am. J. Physiol. 1999;277:R856–R862. [PubMed] [Google Scholar]

205. Stupka N., Tarnopolsky M.A., Yardley N.J., Phillips S.M. Cellular adaptation to repeated eccentric exercise-induced muscle damage. J. Appl. Physiol. 2001;91:1669–1678. [PubMed] [Google Scholar]

206. Powers S.K., Ji L.L., Leeuwenburgh C. Exercise training-induced alterations in skeletal muscle antioxidant capacity: A brief review. Med. Sci. Sports Exerc. 1999;31:987–997. [PubMed] [Google Scholar]

207. Radák Z., Pucsuk J., Boros S., Josfai L., Taylor A.W. Changes in urine 8-hydroxydeoxyguanosine levels of super-marathon runners during a four-day race period. Life Sci. 2000;66:1763–1767. [PubMed] [Google Scholar]

208. Vasankari T.J., Kujala U.M., Vasankari T.M., Vuorimaa T., Ahotupa M. Effects of acute prolonged exercise on-serum and LDL oxidation and antioxidant defences. Free Radic. Biol. Med. 1997;22:509–513. [PubMed] [Google Scholar]

209. Radak Z., Chung H.Y., Goto S. Exercise and hormesis: Oxidative stress-related adaptation for successful aging. Biogerontology. 2005;6:71–75. [PubMed] [Google Scholar]

210. McCay C.M., Crowell M.F., Maynard L.A. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition. 1989;5:155–171. [PubMed] [Google Scholar]

211. Stein P.K., Soare A., Meyer T.E., Cangemi R., Holloszy J.O., Fontana L. Caloric restriction may reverse age-related autonomic decline in humans. Aging Cell. 2012 doi:10.1111/j.1474-9726.2012.00825.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

212. Le Bourg E., Fournier D. Is lifespan extension accompanied by improved antioxidant defences? A study of superoxide dismutase and catalase in Drosophila melanogaster flies that lived in hypergravity at a young age. Biogerontology. 2004;5:261–266. [PubMed] [Google Scholar]

213. Le Bourg E., Valenti P., Payre F. Lack of hypergravity-associated longevity extension in Drosophila melanogaster flies overexpressing hsp70. Biogerontology. 2002;3:355–364. [PubMed] [Google Scholar]

214. Poljšak B., Milisav I. Clinical implications of cellular stress responses. Bosn. J. Basic Med. Sci. 2012;12:122–126. [PMC free article] [PubMed] [Google Scholar]

215. Murry C.E., Richard V.J., Reimer K.A., Jennings R.B. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ. Res. 1990;66:913–931. [PubMed] [Google Scholar]

216. Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–1136. [PubMed] [Google Scholar]

217. Vander Heide R. Clinically useful cardioprotection: Ischemic preconditioning then and now. J. Cardiovasc. Pharmacol. Ther. 2011;16:251–254. [PubMed] [Google Scholar]

218. Fairbanks S.L., Brambrink A.M. Preconditioning and postconditioning for neuroprotection: The most recent evidence. Best Pract. Res. Clin. Anaesthesiol. 2010;24:521–534. [PubMed] [Google Scholar]

219. Shihab F.S. Preconditioning: From experimental findings to novel therapies in acute kidney injury. Min. Urol. Nefrol. 2009;61:143–157. [PubMed] [Google Scholar]

220. Theodoraki K., Tympa A., Karmaniolou I., Tsaroucha A., Arkadopoulos N., Smyrniotis V. Ischemia/reperfusion injury in liver resection: A review of preconditioning methods. Surg. Today. 2011;41:620–629. [PubMed] [Google Scholar]

221. Ding Z.M., Wu B., Zhang W.Q., Lu X.J., Lin Y.C., Geng Y.J., Miao Y.F. Neuroprotective effects of ischemic preconditioning and postconditioning on global brain ischemia in rats through the same effect on inhibition of apoptosis. Int. J. Mol. Sci. 2012;13:6089–6101. [PMC free article] [PubMed] [Google Scholar]

222. Wagner C., Tillack D., Simonis G., Strasser R.H., Weinbrenner C. Ischemic post-conditioning reduces infarct size of the in vivo rat heart: Role of PI3-K, mTOR, GSK-3beta, and apoptosis. Mol. Cell Biochem. 2010;339:135–147. [PubMed] [Google Scholar]

223. Zhao Z.Q., Corvera J.S., Halkos M.E., Kerendi F., Wang N.P., Guyton R.A., Vinten-Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol. 2003;285:H579–H588. [PubMed] [Google Scholar]

224. Alreja G., Bugano D., Lotfi A. Effect of remote ischemic preconditioning on myocardial and renal injury: Meta-Analysis of randomized controlled trials. J. Invasive Cardiol. 2012;24:42–48. [PubMed] [Google Scholar]

225. Naesens M. Replicative senescence in kidney aging, renal disease, and renal transplantation. Discov. Med. 2011;11:65–75. [PubMed] [Google Scholar]

226. Pribenszky C., Vajta G. Cells under pressure: How sublethal hydrostatic pressure stress treatment increases gametes’ and embryos’ performance. Reprod. Fertil. Dev. 2011;23:48–55. [PubMed] [Google Scholar]

227. Sharma R.K., Netland P.A., Kedrov M.A., Johnson D.A. Preconditioning protects the retinal pigment epithelium cells from oxidative stress-induced cell death. Acta Ophthalmol. 2009;87:82–88. [PubMed] [Google Scholar]

228. Uchida Y., Tamaki T., Tanaka M., Kaizu T., Tsuchihashi S., Takahashi T., Kawamura A., Kakita A. Induction of specific stress response increases resistance of rat liver allografts to cold ischemia and reperfusion injury. Transplant. Int. 2003;16:396–404. [PubMed] [Google Scholar]

229. Harrison E.M., Sharpe E., Bellamy C.O., McNally S.J., Devey L., Garden O.J., Ross J.A., Wigmore S.J. Heat shock protein 90-binding agents protect renal cells from oxidative stress and reduce kidney ischemia-reperfusion injury. Am. J. Physiol. Ren. Physiol. 2008;295:F397–F405. [PubMed] [Google Scholar]

230. Wang X., Zhao T., Huang W., Wang T., Qian J., Xu M., Kranias E.G., Wang Y., Fan G.C. Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cells. 2009;27:3021–3031. [PMC free article] [PubMed] [Google Scholar]

Adaptive Response, Evidence of Cross-Resistance and Its Potential Clinical Use (2024)

FAQs

What is an example of adaptive stress response? ›

Some people go for a run, do yoga, or exercise to relieve their stress. Other examples of adaptive coping skills are by solving the problem, using humor, taking a break or pausing before reacting, or even just being mindful in the moment. All of these are examples of things we can do that don't make the event worse.

What does it mean when a response is adaptive? ›

The ability of a cell, tissue, or organism to better resist stress damage by prior exposure to a lesser amount of stress is known as adaptive response. It is observed in all organisms in response to a number of different cytotoxic agents.

What is an adaptive response in psychology? ›

Adaptive reaction, also known as adaptive response, is the appropriate reaction to environmental stimulus. For instance, the iris of the eye expands and contracts in response to the brightness level in the environment. This is an automatic response of the eye, rather than a conscious reaction.

What is adaptive stress response function? ›

Adaptive stress response. Stress responses are mechanisms to adapt to and to overcome stress stimuli. Through them, the cells can restore stress-damaged structures or trigger cell death. Stress responses to mild/moderate stress may result in enhanced defense and repair and even cross-resistance to multiple stressors.

What are examples of adaptive responses in psychology? ›

A psychological adaptation is most often defined as a proclivity toward a certain behavior or thought pattern. For instance, a fear of snakes might be a psychological adaptation that helped protect people from injury or death as a result of being bitten.

Is anxiety an adaptive response? ›

Normal anxiety is considered an adaptive response to the possible presence of danger, but is susceptible to dysregulation.

What are the 4 stages of the adaptive response? ›

The adaptive immune response in B cells, Helper T cells and Cytotoxic T cells involved four phases: encounter, activation, attack, and memory.

Is ADHD an adaptive response? ›

Participants with higher ADHD-like behavior scores demonstrated greater foraging proficiency, suggesting ADHD might serve an adaptive function in competitive environments.

What is the adaptive response to trauma? ›

The trauma response is a sign of strength and adaptation. Dissociation is an adaptive part of the trauma response, though it is distressing it often can be healed. Awareness about what dissociation is and where it comes from can help us unpack and understand trauma.

What is the cross stressor adaptation response? ›

The cross-stressor adaptation hypothesis (Hamer et al., 2006; Sothmann, 2006) states that regular exercise leads to biological adaptations which result in a reduced reactivity of the sympathetic nervous system and the HPA axis to stressors in general.

What is the adaptive response method? ›

The adaptive response is defined as the ligand-dependent activation of AHR by exogenous ligands leading to increases in drug metabolizing enzymes that promote the metabolic transformation and excretion of the activating compounds [91].

What is an example of an adaptive process? ›

Adaptive processes include within-individual trait variation (individual plasticity) and microevolution (Figure 1B). Here, we consider processes that enable populations to increase their performance under adverse conditions, for example, through behavioural or morphological adjustments.

What is an example of an adaptive mechanism? ›

Self-adaptive mechanisms, sometimes simply called adaptive mechanisms, in engineering, are underactuated mechanisms that can adapt to their environment. One of the most well-known example of this type of mechanisms are underactuated fingers, grippers, and robotic hands.

What are the 3 types of stress response? ›

It's important to distinguish among three kinds of responses to stress: positive, tolerable, and toxic.

Top Articles
How To Manage Your Money: A Beginner’s Guide
How Long Should You Keep Tax Returns?
Zabor Funeral Home Inc
Bashas Elearning
Missed Connections Inland Empire
Craigslist Cars And Trucks For Sale By Owner Indianapolis
T Mobile Rival Crossword Clue
How to know if a financial advisor is good?
Die Windows GDI+ (Teil 1)
Soap2Day Autoplay
Magic Mike's Last Dance Showtimes Near Marcus Cedar Creek Cinema
Games Like Mythic Manor
Echat Fr Review Pc Retailer In Qatar Prestige Pc Providers – Alpha Marine Group
2 Corinthians 6 Nlt
Lancasterfire Live Incidents
How do I get into solitude sewers Restoring Order? - Gamers Wiki
Dirt Removal in Burnet, TX ~ Instant Upfront Pricing
Union Ironworkers Job Hotline
Pay Boot Barn Credit Card
Race Karts For Sale Near Me
Metro Pcs.near Me
Epguides Strange New Worlds
Ein Blutbad wie kein anderes: Evil Dead Rise ist der Horrorfilm des Jahres
Bible Gateway passage: Revelation 3 - New Living Translation
R. Kelly Net Worth 2024: The King Of R&B's Rise And Fall
Galaxy Fold 4 im Test: Kauftipp trotz Nachfolger?
Tokyo Spa Memphis Reviews
Ou Football Brainiacs
Jackass Golf Cart Gif
Mosley Lane Candles
Khatrimmaza
2012 Street Glide Blue Book Value
Cross-Border Share Swaps Made Easier Through Amendments to India’s Foreign Exchange Regulations - Transatlantic Law International
Jefferson Parish Dump Wall Blvd
Hannibal Mo Craigslist Pets
Ksu Sturgis Library
159R Bus Schedule Pdf
Sam's Club Gas Prices Deptford Nj
Clima De 10 Días Para 60120
Birmingham City Schools Clever Login
Pekin Soccer Tournament
Centimeters to Feet conversion: cm to ft calculator
Gas Buddy Il
Theatervoorstellingen in Nieuwegein, het complete aanbod.
300+ Unique Hair Salon Names 2024
Germany’s intensely private and immensely wealthy Reimann family
Publix Store 840
Roller Znen ZN50QT-E
Superecchll
Hkx File Compatibility Check Skyrim/Sse
Koniec veľkorysých plánov. Prestížna LEAF Academy mení adresu, masívny kampus nepostaví
Latest Posts
Article information

Author: Twana Towne Ret

Last Updated:

Views: 6675

Rating: 4.3 / 5 (64 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Twana Towne Ret

Birthday: 1994-03-19

Address: Apt. 990 97439 Corwin Motorway, Port Eliseoburgh, NM 99144-2618

Phone: +5958753152963

Job: National Specialist

Hobby: Kayaking, Photography, Skydiving, Embroidery, Leather crafting, Orienteering, Cooking

Introduction: My name is Twana Towne Ret, I am a famous, talented, joyous, perfect, powerful, inquisitive, lovely person who loves writing and wants to share my knowledge and understanding with you.