2.1: Osmosis (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    6459
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    2.1: Osmosis (1)

    Saltwater Fish vs. Freshwater Fish?

    Fish cells, like all cells, have semi-permeable membranes. Eventually, the concentration of "stuff" on either side of them will even out. A fish that lives in salt water will have somewhat salty water inside itself. Put it in the freshwater, and the freshwater will, through osmosis, enter the fish, causing its cells to swell, and the fish will die. What will happen to a freshwater fish in the ocean?

    Osmosis

    Imagine you have a cup that has 100ml water, and you add 15g of table sugar to the water. The sugar dissolves and the mixture that is now in the cup is made up of a solute (the sugar) that is dissolved in the solvent (the water). The mixture of a solute in a solvent is called asolution.

    Imagine now that you have a second cup with 100ml of water, and you add 45 grams of table sugar to the water. Just like the first cup, the sugar is the solute, and the water is the solvent. But now you have two mixtures of different solute concentrations. In comparing two solutions of unequal solute concentration, the solution with the higher solute concentration is hypertonic, and the solution with the lower solute concentration is hypotonic. Solutions of equal solute concentration are isotonic. The first sugar solution is hypotonic to the second solution. The second sugar solution is hypertonic to the first.

    You now add the two solutions to a beaker that has been divided by a selectively permeable membrane, with pores that are too small for the sugar molecules to pass through, but are big enough for the water molecules to pass through. The hypertonic solution is on one side of the membrane and the hypotonic solution on the other. The hypertonic solution has a lower water concentration than the hypotonic solution, so a concentration gradient of water now exists across the membrane. Water molecules will move from the side of higher water concentration to the side of lower concentration until both solutions are isotonic. At this point, equilibrium is reached.

    Osmosis is the diffusion of water molecules across a selectively permeable membrane from an area of higher concentration to an area of lower concentration. Water moves into and out of cells by osmosis. If a cell is in a hypertonic solution, the solution has a lower water concentration than the cell cytosol, and water moves out of the cell until both solutions are isotonic. Cells placed in a hypotonic solution will take in water across their membrane until both the external solution and the cytosol are isotonic.

    A cell that does not have a rigid cell wall, such as a red blood cell, will swell and lyse (burst) when placed in a hypotonic solution. Cells with a cell wall will swell when placed in a hypotonic solution, but once the cell is turgid (firm), the tough cell wall prevents any more water from entering the cell. When placed in a hypertonic solution, a cell without a cell wall will lose water to the environment, shrivel, and probably die. In a hypertonic solution, a cell with a cell wall will lose water too. The plasma membrane pulls away from the cell wall as it shrivels, a process called plasmolysis. Animal cells tend to do best in an isotonic environment, plant cells tend to do best in a hypotonic environment. This is demonstrated inFigure below.

    2.1: Osmosis (2)

    Unless an animal cell (such as the red blood cell in the top panel) has an adaptation that allows it to alter the osmotic uptake of water, it will lose too much water and shrivel up in a hypertonic environment. If placed in a hypotonic solution, water molecules will enter the cell, causing it to swell and burst. Plant cells (bottom panel) become plasmolyzed in a hypertonic solution, but tend to do best in a hypotonic environment. Water is stored in the central vacuole of the plant cell.

    Osmotic Pressure

    When water moves into a cell by osmosis, osmotic pressure may build up inside the cell. If a cell has a cell wall, the wall helps maintain the cell’s water balance. Osmotic pressure is the main cause of support in many plants. When a plant cell is in a hypotonic environment, the osmotic entry of water raises the turgor pressure exerted against the cell wall until the pressure prevents more water from coming into the cell. At this point the plant cell is turgid (Figure below). The effects of osmotic pressures on plant cells are shown in Figure below.

    2.1: Osmosis (3)

    The central vacuoles of the plant cells in this image are full of water, so the cells are turgid.

    In contrast, the vacuoles take up much less space when the tissue is placed in hypertonic solution, see below.

    2.1: Osmosis (4)

    The action of osmosis can be very harmful to organisms, especially ones without cell walls. For example, if a saltwater fish (whose cells are isotonic with seawater), is placed in fresh water, its cells will take on excess water, lyse, and the fish will die. Another example of a harmful osmotic effect is the use of table salt to kill slugs and snails.

    Diffusion and osmosis are discussed at http://www.youtube.com/watch?v=aubZU0iWtgI(18:59).

    Controlling Osmosis

    Organisms that live in a hypotonic environment such as freshwater, need a way to prevent their cells from taking in too much water by osmosis. A contractile vacuole is a type of vacuole that removes excess water from a cell. Freshwater protists, such as the paramecium shown in Figure below, have a contractile vacuole. The vacuole is surrounded by several canals, which absorb water by osmosis from the cytoplasm. After the canals fill with water, the water is pumped into the vacuole. When the vacuole is full, it pushes the water out of the cell through a pore.

    2.1: Osmosis (5)

    The contractile vacuole is the star-like structure within the paramecia.

    Summary

    • Osmosis is the diffusion of water.
    • In comparing two solutions of unequal solute concentration, the solution with the higher solute concentration is hypertonic, and the solution with the lower concentration is hypotonic. Solutions of equal solute concentration are isotonic.
    • A contractile vacuole is a type of vacuole that removes excess water from a cell.

    Explore More

    Explore More I

    Use this resource to answer the questions that follow.

    1. What is osmosis?
    2. What does salt do to water?
    3. What is a hypotonic solution? What happens to water in a hypotonic solution?
    4. What is a hypertonic solution? What happens to water in a hypertonic solution?
    5. What happens to water in an isotonic solution?

    Explore More III

    • Osmosis

    Review

    1. What is osmosis? What type of transport is it?
    2. How does osmosis differ from diffusion?
    3. What happens to red blood cells when placed in a hypotonic solution?
    4. What will happen to a salt water fish if placed in fresh water?
    2.1: Osmosis (2024)
    Top Articles
    Asset Class Correlation | Gold Correlation | Goldhub
    What Are The Types Of Dental Crowns And The Cost In The UK? | Waldron Dental
    Worcester Weather Underground
    Noaa Charleston Wv
    Is pickleball Betts' next conquest? 'That's my jam'
    Tj Nails Victoria Tx
    Find All Subdomains
    Shorthand: The Write Way to Speed Up Communication
    Deshret's Spirit
    Aquatic Pets And Reptiles Photos
    Mid90S Common Sense Media
    Slope Unblocked Minecraft Game
    Oc Craiglsit
    Studentvue Columbia Heights
    Cashtapp Atm Near Me
    Payment and Ticket Options | Greyhound
    Michigan cannot fire coach Sherrone Moore for cause for known NCAA violations in sign-stealing case
    Katherine Croan Ewald
    Mflwer
    Average Salary in Philippines in 2024 - Timeular
    Race Karts For Sale Near Me
    Crawlers List Chicago
    Form F-1 - Registration statement for certain foreign private issuers
    University Of Michigan Paging System
    Essence Healthcare Otc 2023 Catalog
    Danielle Moodie-Mills Net Worth
    Joann Fabrics Lexington Sc
    Shoe Station Store Locator
    Evil Dead Rise Showtimes Near Regal Sawgrass & Imax
    Martins Point Patient Portal
    Craigslist/Phx
    Vip Lounge Odu
    Craigslist Texas Killeen
    Craigslist Dallastx
    2012 Street Glide Blue Book Value
    Black Adam Showtimes Near Amc Deptford 8
    Kazwire
    ENDOCRINOLOGY-PSR in Lewes, DE for Beebe Healthcare
    Ashoke K Maitra. Adviser to CMD&#39;s. Received Lifetime Achievement Award in HRD on LinkedIn: #hr #hrd #coaching #mentoring #career #jobs #mba #mbafreshers #sales…
    Wo ein Pfand ist, ist auch Einweg
    Puretalkusa.com/Amac
    Metro Pcs Forest City Iowa
    Dispensaries Open On Christmas 2022
    Citroen | Skąd pobrać program do lexia diagbox?
    Killer Intelligence Center Download
    Dragon Ball Super Card Game Announces Next Set: Realm Of The Gods
    Theatervoorstellingen in Nieuwegein, het complete aanbod.
    Heat Wave and Summer Temperature Data for Oklahoma City, Oklahoma
    Epower Raley's
    Lagrone Funeral Chapel & Crematory Obituaries
    4015 Ballinger Rd Martinsville In 46151
    Latest Posts
    Article information

    Author: Foster Heidenreich CPA

    Last Updated:

    Views: 5820

    Rating: 4.6 / 5 (76 voted)

    Reviews: 83% of readers found this page helpful

    Author information

    Name: Foster Heidenreich CPA

    Birthday: 1995-01-14

    Address: 55021 Usha Garden, North Larisa, DE 19209

    Phone: +6812240846623

    Job: Corporate Healthcare Strategist

    Hobby: Singing, Listening to music, Rafting, LARPing, Gardening, Quilting, Rappelling

    Introduction: My name is Foster Heidenreich CPA, I am a delightful, quaint, glorious, quaint, faithful, enchanting, fine person who loves writing and wants to share my knowledge and understanding with you.